The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 483-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u\not\equiv-\infty$ be a subharmonic function in the complex plane. We establish necessary and/or sufficient conditions for the existence of a nonzero entire function $f$ for which the modulus of the product of each of its $k$th derivative $k=0,1,\dots$, by any polynomial $p$ is not greater than the function $Ce^u$ in the entire complex plane, where $C$ is a constant depending on $k$ and $p$. The results obtained significantly strengthen and develop a number of results of Lars Hörmander (1997).
Keywords: entire function, subharmonic function, integral mean, Riesz measure, counting function.
@article{MZM_2017_101_4_a0,
     author = {T. Yu. Baiguskarov and B. N. Khabibullin and A. V. Khasanova},
     title = {The {Logarithm} of the {Modulus} of a {Holomorphic} {Function} as a {Minorant} for a {Subharmonic} {Function.} {II.~The} {Complex} {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--502},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a0/}
}
TY  - JOUR
AU  - T. Yu. Baiguskarov
AU  - B. N. Khabibullin
AU  - A. V. Khasanova
TI  - The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane
JO  - Matematičeskie zametki
PY  - 2017
SP  - 483
EP  - 502
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a0/
LA  - ru
ID  - MZM_2017_101_4_a0
ER  - 
%0 Journal Article
%A T. Yu. Baiguskarov
%A B. N. Khabibullin
%A A. V. Khasanova
%T The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane
%J Matematičeskie zametki
%D 2017
%P 483-502
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a0/
%G ru
%F MZM_2017_101_4_a0
T. Yu. Baiguskarov; B. N. Khabibullin; A. V. Khasanova. The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 483-502. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a0/

[1] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, T. 1, Mir, M., 1980 | MR | Zbl

[2] W. K. Hayman, Subharmonic Functions, Vol. 2, London Math. Soc. Monogr., 20, Academic Press, London, 1989 | MR | Zbl

[3] Th. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[4] B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[5] L. Hörmander, “On the Legendre and Laplace transformations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3-4 (1998), 517–568 | MR | Zbl

[6] B. N. Khabibullin, T. Yu. Baiguskarov, “Logarifm modulya golomorfnoi funktsii kak minoranta dlya subgarmonicheskoi funktsii”, Matem. zametki, 99:4 (2016), 588–602 | DOI | MR | Zbl

[7] B. Khabibullin, T. Baiguskarov, “Holomorphic minorants”, Algebra, analiz i smezhnye voprosy matematicheskogo modelirovaniya (g. Vladikavkaz, 26–27 iyunya 2015 g.), SOGU, Vladikavkaz, 2015, 103–105

[8] B. Khabibullin, T. Baiguskarov, Holomorphic Minorants of (Pluri-)Subharmonic Functions, arXiv: 1506.01746

[9] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[10] A. F. Beardon, “Integral means of subharmonic functions”, Proc. Camb. Philos. Soc., 69 (1971), 151–152 | DOI | MR | Zbl

[11] P. Freitas, J. P. Matos, “On the characterization of harmonic and subharmonic functions via mean-value properties”, Potential Anal., 32:2 (2010), 189–200 | DOI | MR | Zbl