Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_4_a0, author = {T. Yu. Baiguskarov and B. N. Khabibullin and A. V. Khasanova}, title = {The {Logarithm} of the {Modulus} of a {Holomorphic} {Function} as a {Minorant} for a {Subharmonic} {Function.} {II.~The} {Complex} {Plane}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--502}, publisher = {mathdoc}, volume = {101}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a0/} }
TY - JOUR AU - T. Yu. Baiguskarov AU - B. N. Khabibullin AU - A. V. Khasanova TI - The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane JO - Matematičeskie zametki PY - 2017 SP - 483 EP - 502 VL - 101 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a0/ LA - ru ID - MZM_2017_101_4_a0 ER -
%0 Journal Article %A T. Yu. Baiguskarov %A B. N. Khabibullin %A A. V. Khasanova %T The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane %J Matematičeskie zametki %D 2017 %P 483-502 %V 101 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a0/ %G ru %F MZM_2017_101_4_a0
T. Yu. Baiguskarov; B. N. Khabibullin; A. V. Khasanova. The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 483-502. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a0/
[1] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, T. 1, Mir, M., 1980 | MR | Zbl
[2] W. K. Hayman, Subharmonic Functions, Vol. 2, London Math. Soc. Monogr., 20, Academic Press, London, 1989 | MR | Zbl
[3] Th. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[4] B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[5] L. Hörmander, “On the Legendre and Laplace transformations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3-4 (1998), 517–568 | MR | Zbl
[6] B. N. Khabibullin, T. Yu. Baiguskarov, “Logarifm modulya golomorfnoi funktsii kak minoranta dlya subgarmonicheskoi funktsii”, Matem. zametki, 99:4 (2016), 588–602 | DOI | MR | Zbl
[7] B. Khabibullin, T. Baiguskarov, “Holomorphic minorants”, Algebra, analiz i smezhnye voprosy matematicheskogo modelirovaniya (g. Vladikavkaz, 26–27 iyunya 2015 g.), SOGU, Vladikavkaz, 2015, 103–105
[8] B. Khabibullin, T. Baiguskarov, Holomorphic Minorants of (Pluri-)Subharmonic Functions, arXiv: 1506.01746
[9] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[10] A. F. Beardon, “Integral means of subharmonic functions”, Proc. Camb. Philos. Soc., 69 (1971), 151–152 | DOI | MR | Zbl
[11] P. Freitas, J. P. Matos, “On the characterization of harmonic and subharmonic functions via mean-value properties”, Potential Anal., 32:2 (2010), 189–200 | DOI | MR | Zbl