Nonreduced Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 425-429
Voir la notice de l'article provenant de la source Math-Net.Ru
A ring $K$ is a unique addition ring (a $\mathrm{UA}$-ring) if its multiplicative semigroup $(K,\,\cdot\,)$ can be equipped with a unique binary operation $+$ transforming this semigroup to a ring $(K,\,\cdot\,,+)$. An Abelian group is called an $\operatorname{End}$-$\mathrm{UA}$-group if its endomorphism ring is a $\mathrm{UA}$-ring. In the paper, we find $\operatorname{End}$-$\mathrm{UA}$-groups in the class of nonreduced Abelian groups.
Keywords:
Abelian group, endomorphism ring.
@article{MZM_2017_101_3_a8,
author = {O. V. Ljubimtsev},
title = {Nonreduced {Abelian} {Groups} with~$\mathrm{UA}${-Rings} of {Endomorphisms}},
journal = {Matemati\v{c}eskie zametki},
pages = {425--429},
publisher = {mathdoc},
volume = {101},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a8/}
}
O. V. Ljubimtsev. Nonreduced Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 425-429. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a8/