Nonreduced Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 425-429

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $K$ is a unique addition ring (a $\mathrm{UA}$-ring) if its multiplicative semigroup $(K,\,\cdot\,)$ can be equipped with a unique binary operation $+$ transforming this semigroup to a ring $(K,\,\cdot\,,+)$. An Abelian group is called an $\operatorname{End}$-$\mathrm{UA}$-group if its endomorphism ring is a $\mathrm{UA}$-ring. In the paper, we find $\operatorname{End}$-$\mathrm{UA}$-groups in the class of nonreduced Abelian groups.
Keywords: Abelian group, endomorphism ring.
@article{MZM_2017_101_3_a8,
     author = {O. V. Ljubimtsev},
     title = {Nonreduced {Abelian} {Groups} with~$\mathrm{UA}${-Rings} of {Endomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {425--429},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a8/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
TI  - Nonreduced Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
JO  - Matematičeskie zametki
PY  - 2017
SP  - 425
EP  - 429
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a8/
LA  - ru
ID  - MZM_2017_101_3_a8
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%T Nonreduced Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
%J Matematičeskie zametki
%D 2017
%P 425-429
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a8/
%G ru
%F MZM_2017_101_3_a8
O. V. Ljubimtsev. Nonreduced Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 425-429. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a8/