Linearly Ordered Theories which are Nearly Countably Categorical
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 413-424

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of almost $\omega$-categoricity and 1-local $\omega$-categoricity are studied. In particular, necessary and sufficient conditions for their equivalence under additional assumptions are found. It is proved that 1-local $\omega$-categorical theories on dense linear orders are Ehrenfeucht and that Ehrenfeucht quite o-minimal binary theories are almost $\omega$-categorical.
Keywords: linear order, almost $\omega$-categoricity, $1$-local $\omega$-categoricity, Ehrenfeucht theory, weak o-minimality, quite o-minimality, binary theory, convexity rank.
@article{MZM_2017_101_3_a7,
     author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Linearly {Ordered} {Theories} which are {Nearly} {Countably} {Categorical}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {413--424},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Linearly Ordered Theories which are Nearly Countably Categorical
JO  - Matematičeskie zametki
PY  - 2017
SP  - 413
EP  - 424
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/
LA  - ru
ID  - MZM_2017_101_3_a7
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Linearly Ordered Theories which are Nearly Countably Categorical
%J Matematičeskie zametki
%D 2017
%P 413-424
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/
%G ru
%F MZM_2017_101_3_a7
B. Sh. Kulpeshov; S. V. Sudoplatov. Linearly Ordered Theories which are Nearly Countably Categorical. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 413-424. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/