Linearly Ordered Theories which are Nearly Countably Categorical
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 413-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of almost $\omega$-categoricity and 1-local $\omega$-categoricity are studied. In particular, necessary and sufficient conditions for their equivalence under additional assumptions are found. It is proved that 1-local $\omega$-categorical theories on dense linear orders are Ehrenfeucht and that Ehrenfeucht quite o-minimal binary theories are almost $\omega$-categorical.
Keywords: linear order, almost $\omega$-categoricity, $1$-local $\omega$-categoricity, Ehrenfeucht theory, weak o-minimality, quite o-minimality, binary theory, convexity rank.
@article{MZM_2017_101_3_a7,
     author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Linearly {Ordered} {Theories} which are {Nearly} {Countably} {Categorical}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {413--424},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Linearly Ordered Theories which are Nearly Countably Categorical
JO  - Matematičeskie zametki
PY  - 2017
SP  - 413
EP  - 424
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/
LA  - ru
ID  - MZM_2017_101_3_a7
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Linearly Ordered Theories which are Nearly Countably Categorical
%J Matematičeskie zametki
%D 2017
%P 413-424
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/
%G ru
%F MZM_2017_101_3_a7
B. Sh. Kulpeshov; S. V. Sudoplatov. Linearly Ordered Theories which are Nearly Countably Categorical. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 413-424. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/

[1] Spravochnaya kniga po matematicheskoi logike. Ch. 1. Teoriya modelei, Nauka, M., 1982 | MR

[2] S. V. Sudoplatov, “Polnye teorii s konechnym chislom schetnykh modelei. I”, Algebra i logika, 43:1 (2004), 110–124 | MR | Zbl

[3] S. V. Sudoplatov, “Polnye teorii s konechnym chislom schetnykh modelei. II”, Algebra i logika, 45:3 (2006), 314–353 | MR | Zbl

[4] S. V. Sudoplatov, “O chisle schetnykh modelei polnykh teorii s konechnymi predporyadkami Rudina–Keislera”, Sib. matem. zhurn., 48:2 (2007), 417–422 | MR | Zbl

[5] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, Ch. 1, 2, NGTU, Novosibirsk, 2014

[6] K. Ikeda, A. Pillay, A. Tsuboi, “On theories having three countable models”, Math. Logic Quart., 44:2 (1998), 161–166 | DOI | MR | Zbl

[7] C. Ryll-Nardzewski, “On the categoricity in power $\leqslant\aleph_0$”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 7 (1959), 545–548 | MR | Zbl

[8] S. V. Sudoplatov, “Ob obogascheniyakh i rasshireniyakh vlastnykh orgrafov”, Sib. matem. zhurn., 50:3 (2009), 625–630 | MR | Zbl

[9] S. V. Sudoplatov, Poligonometrii grupp, NGTU, Novosibirsk, 2011

[10] S. V. Sudoplatov, “Models of cubic theories”, Bull. Sect. Logic Univ. Łódź, 43:1-2 (2014), 19–34 | MR | Zbl

[11] M. Benda, “Remarks on countable models”, Fund. Math., 81:2 (1974), 107–119 | MR | Zbl

[12] R. L. Vaught, “Denumerable models of complete theories”, Infinistic Methods, Pergamon, Oxford, 1961, 303–321 | MR | Zbl

[13] B. Sh. Kulpeshov, “Rang vypuklosti i ortogonalnost v slabo o-minimalnykh teoriyakh”, Izv. NAN RK. Ser. fiz.-matem., 227 (2003), 26–31 | MR

[14] D. Macpherson, D. Marker, C. Steinhorn, “Weakly o-minimal structures and real closed fields”, Trans. Amer. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[15] B. S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, J. Symbolic Logic, 66:3 (2001), 1382–1414 | DOI | MR | Zbl

[16] B. Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties”, J. Symbolic Logic, 63:4 (1998), 1511–1528 | DOI | MR | Zbl

[17] S. V. Sudoplatov, “Sintaksicheskii podkhod k postroeniyu genericheskikh modelei”, Algebra i logika, 46:2 (2007), 244–268 | MR | Zbl