Linearly Ordered Theories which are Nearly Countably Categorical
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 413-424
Voir la notice de l'article provenant de la source Math-Net.Ru
The notions of almost $\omega$-categoricity and 1-local $\omega$-categoricity are studied. In particular, necessary and sufficient conditions for their equivalence under additional assumptions are found. It is proved that 1-local $\omega$-categorical theories on dense linear orders are Ehrenfeucht and that Ehrenfeucht quite o-minimal binary theories are almost $\omega$-categorical.
Keywords:
linear order, almost $\omega$-categoricity, $1$-local $\omega$-categoricity, Ehrenfeucht theory, weak o-minimality, quite o-minimality, binary theory, convexity rank.
@article{MZM_2017_101_3_a7,
author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
title = {Linearly {Ordered} {Theories} which are {Nearly} {Countably} {Categorical}},
journal = {Matemati\v{c}eskie zametki},
pages = {413--424},
publisher = {mathdoc},
volume = {101},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/}
}
TY - JOUR AU - B. Sh. Kulpeshov AU - S. V. Sudoplatov TI - Linearly Ordered Theories which are Nearly Countably Categorical JO - Matematičeskie zametki PY - 2017 SP - 413 EP - 424 VL - 101 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/ LA - ru ID - MZM_2017_101_3_a7 ER -
B. Sh. Kulpeshov; S. V. Sudoplatov. Linearly Ordered Theories which are Nearly Countably Categorical. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 413-424. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a7/