Boundary-Value Problems for Some Higher-Order Nonclassical Differential Equations
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 403-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper consists of two parts. The first part deals with the solvability of new boundary-value problems for the model quasihyperbolic equations \begin{equation*} (-1)^pD^{2p}_tu=Au+f(x,t), \end{equation*} where $p>1$, for a self-adjoint second-order elliptic operator $A$. For the problems under study, the existence and uniqueness theorems are proved for regular solutions. In the second part, the results obtained in the first part are somewhat sharpened and generalized.
Mots-clés : quasihyperbolic equations, existence
Keywords: boundary-value problems, regular solutions, uniqueness.
@article{MZM_2017_101_3_a6,
     author = {A. I. Kozhanov and N. R. Pinigina},
     title = {Boundary-Value {Problems} for {Some} {Higher-Order} {Nonclassical} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {403--412},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a6/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - N. R. Pinigina
TI  - Boundary-Value Problems for Some Higher-Order Nonclassical Differential Equations
JO  - Matematičeskie zametki
PY  - 2017
SP  - 403
EP  - 412
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a6/
LA  - ru
ID  - MZM_2017_101_3_a6
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A N. R. Pinigina
%T Boundary-Value Problems for Some Higher-Order Nonclassical Differential Equations
%J Matematičeskie zametki
%D 2017
%P 403-412
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a6/
%G ru
%F MZM_2017_101_3_a6
A. I. Kozhanov; N. R. Pinigina. Boundary-Value Problems for Some Higher-Order Nonclassical Differential Equations. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a6/

[1] V. N. Vragov, “K teorii kraevykh zadach dlya uravnenii smeshannogo tipa v prostranstve”, Differents. uravneniya, 13:6 (1977), 1098–1105 | MR | Zbl

[2] V. N. Vragov, “O postanovke i razreshimosti kraevykh zadach dlya uravnenii smeshanno-sostavnogo tipa”, Matematicheskii analiz i smezhnye voprosy matematiki, Nauka, Novosibirsk, 1978, 5–13

[3] I. E. Egorov, V. E. Fedorov, Neklassicheskie uravneniya matematicheskoi fiziki vysokogo poryadka, VTs SO RAN, Novosibirsk, 1995 | MR

[4] A. N. Terekhov, “Kraevaya zadacha dlya uravneniya smeshannogo tipa. Primenenie metodov funktsionalnogo analiza k resheniyu zadach matematicheskoi fiziki i vychislitelnoi matematiki”, Sb. nauchn. tr., In-t matem. CO AN SSSR, Novosibirsk, 1979, 128–137

[5] I. E. Egorov, T. I. Zakharova, “O fredgolmovosti kraevoi zadachi dlya uravneniya smeshannogo tipa”, Matem. zametki YaGU, 20:1 (2013), 20–26

[6] I. E. Egorov, “O kraevoi zadache dlya uravneniya smeshannogo tipa so spektralnym parametrom”, Matem. zametki SVFU, 21:1 (2014), 11–17 | Zbl

[7] A. I. Kozhanov, E. F. Sharin, “Zadacha sopryazheniya dlya nekotorykh neklassicheskikh differentsialnykh uravnenii vysokogo poryadka”, Ukr. matem. visnik, 11:2 (2014), 181–202

[8] A. I. Kozhanov, E. F. Sharin, “Zadacha sopryazheniya dlya nekotorykh neklassicheskikh differentsialnykh uravnenii vysokogo poryadka. II”, Matem. zametki SVFU, 21:1 (2014), 18–28 | Zbl

[9] A. I. Kozhanov, “O edinstvennosti reshenii kraevykh zadach dlya nekotorykh klassov uravnenii smeshannogo tipa vysokogo poryadka”, Uzbekskii matem. zhurn., 2014, no. 4, 90–98

[10] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[11] L. K. Evans, Uravneniya s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2003

[12] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[13] S. K. Godunov, Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami. T. 1. Kraevye zadachi, Izd-vo Novosibirskogo un-ta, Novosibirsk, 1994 | MR | Zbl

[14] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[15] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl