Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_3_a6, author = {A. I. Kozhanov and N. R. Pinigina}, title = {Boundary-Value {Problems} for {Some} {Higher-Order} {Nonclassical} {Differential} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {403--412}, publisher = {mathdoc}, volume = {101}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a6/} }
TY - JOUR AU - A. I. Kozhanov AU - N. R. Pinigina TI - Boundary-Value Problems for Some Higher-Order Nonclassical Differential Equations JO - Matematičeskie zametki PY - 2017 SP - 403 EP - 412 VL - 101 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a6/ LA - ru ID - MZM_2017_101_3_a6 ER -
A. I. Kozhanov; N. R. Pinigina. Boundary-Value Problems for Some Higher-Order Nonclassical Differential Equations. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a6/
[1] V. N. Vragov, “K teorii kraevykh zadach dlya uravnenii smeshannogo tipa v prostranstve”, Differents. uravneniya, 13:6 (1977), 1098–1105 | MR | Zbl
[2] V. N. Vragov, “O postanovke i razreshimosti kraevykh zadach dlya uravnenii smeshanno-sostavnogo tipa”, Matematicheskii analiz i smezhnye voprosy matematiki, Nauka, Novosibirsk, 1978, 5–13
[3] I. E. Egorov, V. E. Fedorov, Neklassicheskie uravneniya matematicheskoi fiziki vysokogo poryadka, VTs SO RAN, Novosibirsk, 1995 | MR
[4] A. N. Terekhov, “Kraevaya zadacha dlya uravneniya smeshannogo tipa. Primenenie metodov funktsionalnogo analiza k resheniyu zadach matematicheskoi fiziki i vychislitelnoi matematiki”, Sb. nauchn. tr., In-t matem. CO AN SSSR, Novosibirsk, 1979, 128–137
[5] I. E. Egorov, T. I. Zakharova, “O fredgolmovosti kraevoi zadachi dlya uravneniya smeshannogo tipa”, Matem. zametki YaGU, 20:1 (2013), 20–26
[6] I. E. Egorov, “O kraevoi zadache dlya uravneniya smeshannogo tipa so spektralnym parametrom”, Matem. zametki SVFU, 21:1 (2014), 11–17 | Zbl
[7] A. I. Kozhanov, E. F. Sharin, “Zadacha sopryazheniya dlya nekotorykh neklassicheskikh differentsialnykh uravnenii vysokogo poryadka”, Ukr. matem. visnik, 11:2 (2014), 181–202
[8] A. I. Kozhanov, E. F. Sharin, “Zadacha sopryazheniya dlya nekotorykh neklassicheskikh differentsialnykh uravnenii vysokogo poryadka. II”, Matem. zametki SVFU, 21:1 (2014), 18–28 | Zbl
[9] A. I. Kozhanov, “O edinstvennosti reshenii kraevykh zadach dlya nekotorykh klassov uravnenii smeshannogo tipa vysokogo poryadka”, Uzbekskii matem. zhurn., 2014, no. 4, 90–98
[10] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl
[11] L. K. Evans, Uravneniya s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2003
[12] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[13] S. K. Godunov, Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami. T. 1. Kraevye zadachi, Izd-vo Novosibirskogo un-ta, Novosibirsk, 1994 | MR | Zbl
[14] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[15] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl