Properties of Connected Ortho-convex Sets in the Plane
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 373-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological properties of connected ortho-convex sets in the plane, i.e., connected sets convex along the horizontal and vertical lines are studied. Several geometric statements concerning the ortho-separation of ortho-convex sets are proved.
Keywords: ortho-convex set, ortho-half-space, ortho-hyperplane, ortho-separation.
@article{MZM_2017_101_3_a4,
     author = {A. M. Dulliev},
     title = {Properties of {Connected} {Ortho-convex} {Sets} in the {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {373--394},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a4/}
}
TY  - JOUR
AU  - A. M. Dulliev
TI  - Properties of Connected Ortho-convex Sets in the Plane
JO  - Matematičeskie zametki
PY  - 2017
SP  - 373
EP  - 394
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a4/
LA  - ru
ID  - MZM_2017_101_3_a4
ER  - 
%0 Journal Article
%A A. M. Dulliev
%T Properties of Connected Ortho-convex Sets in the Plane
%J Matematičeskie zametki
%D 2017
%P 373-394
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a4/
%G ru
%F MZM_2017_101_3_a4
A. M. Dulliev. Properties of Connected Ortho-convex Sets in the Plane. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 373-394. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a4/

[1] E. Fink, D. Wood, Restricted-Orientation Convexity, Monogr. in Theoret. Comput. Sci. An EATCS Ser., Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[2] V. G. Naidenko, “O styagivaemosti poluprostranstv chastichnoi vypuklosti”, Matem. zametki, 85:6 (2009), 915–926 | DOI | MR | Zbl

[3] V. G. Naidenko, “Chastichnaya vypuklost”, Matem. zametki, 75:2 (2004), 222–235 | DOI | MR | Zbl

[4] V. P. Soltan, Vvedenie v aksiomaticheskuyu teoriyu vypuklosti, Shtiintsa, Kishenev, 1984 | MR

[5] K. Kuratovskii, Topologiya, T. 2, Mir, M., 1969 | MR

[6] L. Shvarts, Analiz, T. 1, Mir, M., 1972 | Zbl

[7] R. J. Aumann, S. Hart, “Bi-convexity and bi-martingales”, Israel J. Math., 54:2 (1986), 159–180 | DOI | MR | Zbl

[8] J. Gorski, F. Pfeuffer, K. Klamroth, “Biconvex sets and optimization with biconvex functions: a survey and extensions”, Math. Methods Oper. Res., 66:3 (2007), 373–407 | DOI | MR | Zbl