Analogs of the Globevnik Problem on Riemannian Two-Point Homogeneous Spaces
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 359-372
Voir la notice de l'article provenant de la source Math-Net.Ru
On a two-point homogeneous space $X$, we consider the problem of describing the set of continuous functions having zero integrals over all spheres enclosing the given ball. We obtain the solution of this problem and its generalizations for an annular domain in $X$. By way of applications, we prove new uniqueness theorems for functions with zero spherical means.
Keywords:
spherical means, two-point homogeneous space, transmutation operator.
@article{MZM_2017_101_3_a3,
author = {V. V. Volchkov and Vit. V. Volchkov},
title = {Analogs of the {Globevnik} {Problem} on {Riemannian} {Two-Point} {Homogeneous} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {359--372},
publisher = {mathdoc},
volume = {101},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a3/}
}
TY - JOUR AU - V. V. Volchkov AU - Vit. V. Volchkov TI - Analogs of the Globevnik Problem on Riemannian Two-Point Homogeneous Spaces JO - Matematičeskie zametki PY - 2017 SP - 359 EP - 372 VL - 101 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a3/ LA - ru ID - MZM_2017_101_3_a3 ER -
V. V. Volchkov; Vit. V. Volchkov. Analogs of the Globevnik Problem on Riemannian Two-Point Homogeneous Spaces. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 359-372. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a3/