On the Behavior of Harmonic Mappings in Angles
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 474-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: harmonic and quasiconformal mapping, behavior of mappings near the vertices of re-entrant angles, harmonic computational grid.
@article{MZM_2017_101_3_a11,
     author = {S. I. Bezrodnykh and V. I. Vlasov},
     title = {On the {Behavior} of {Harmonic} {Mappings} in {Angles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {474--480},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a11/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
AU  - V. I. Vlasov
TI  - On the Behavior of Harmonic Mappings in Angles
JO  - Matematičeskie zametki
PY  - 2017
SP  - 474
EP  - 480
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a11/
LA  - ru
ID  - MZM_2017_101_3_a11
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%A V. I. Vlasov
%T On the Behavior of Harmonic Mappings in Angles
%J Matematičeskie zametki
%D 2017
%P 474-480
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a11/
%G ru
%F MZM_2017_101_3_a11
S. I. Bezrodnykh; V. I. Vlasov. On the Behavior of Harmonic Mappings in Angles. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 474-480. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a11/

[1] T. Radó, “Aufgabe 41”, Jahresbericht D. M. V., 35 (1926), 49

[2] H. Kneser, “Lösung der Aufgabe 41”, Jahresbericht D. M. V., 35 (1926), 123–124 | Zbl

[3] G. Choquet, Bull. Sci. Math. (2), 69:2 (1945), 156–165 | MR | Zbl

[4] L. D. Kudryavtsev, Matem. sb., 36 (78):2 (1955), 201–208 | MR | Zbl

[5] O. Martio, Ann. Acad. Sci. Fenn. Ser. A. I, 425 (1968), 3–10 | MR | Zbl

[6] R. Hamilton, Harmonic Maps of Manifolds with Boundary, Lecture Notes in Math., 471, Springer–Verlag, Berlin, 1975 | DOI | MR | Zbl

[7] J. Clunie, T. Sheil–Small, Ann. Acad. Sci. Fenn. Ser. A I Math., 1984, no. 9, 3–25 | DOI | MR | Zbl

[8] J. Jost, Harmonic Mappings and Minimal Immersions, Lecture Notes in Math., 1161, Springer–Verlag, Berlin, 1985, 118–192 | DOI | MR | Zbl

[9] P. Duren, Harmonic Mappings in the Plane, Cambrige Tracts in Math., 156, Cambrige Univ. Press, Cambrige, 2004 | MR | Zbl

[10] D. Bshouty, W. Hengartner, “Univalent harmonic mappings in the plane”, Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, Elsevier, Amsterdam, 2005, 479–506 | MR | Zbl

[11] S. I. Bezrodnykh, V. I. Vlasov, SMFN, 46, RUDN, M., 2012, 5–30 | MR

[12] A. M. Winslow, J. Computational Phys., 1:2 (1967), 149–172 | DOI | MR | Zbl

[13] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, G. P. Prokopov, A. M. Kraiko, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR

[14] J. F. Thompson, Z. U. A. Warsi, C. W. Mastin, Numerical Grid Generation. Foundations and Applications, North-Holland Publ., New York, 1985 | MR | Zbl

[15] S. Sengupta, J. Hauser, P. R. Eiseman, J. F. Thompson (eds.), Numerical Grid Generation in Computational Fluid Mechanics '88, Pineridge Press, Swansea, 1988

[16] P. Knupp, S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Raton, FL, 1994 | MR | Zbl

[17] S. A. Ivanenko, Adaptivno-garmonicheskie setki, Izd-vo VTs RAN, M., 1997 | MR | Zbl

[18] V. D. Liseikin, Grid Generation Methods. Scientific Computation, Springer-Verlag, Berlin, 1999 | MR | Zbl

[19] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[20] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR | Zbl

[21] P. J. Roache, S. Steinberg, “A new approach to grid generation using a variational formulation”, Proceedings of the 7th Computational Physics Conference, 1985, 360–370 | DOI

[22] P. Knupp, R. Luczak, Numer. Methods Partial Differential Equations, 11:6 (1995), 561–571 | DOI | MR | Zbl

[23] B. N. Azarenok, A. A. Charakhchyan, Matem. modelirovanie, 26:12 (2014), 48–64 | Zbl

[24] P. P. Belinskii, S. K. Godunov, Yu. V. Ivanov, I. K. Yanenko, Zh. vychisl. matem. i matem. fiz., 15:6 (1975), 1499–1511 | MR | Zbl