Majorants of the Dirichlet Kernels and the Dini Pointwise Tests for Generalized Haar Systems
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 446-473.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain five tests (three of which are symmetric) of pointwise convergence of Fourier series with respect to generalized Haar systems; the tests are similar to the Dini convergence tests. It is shown that the Dini convergence tests for Price systems are also valid for generalized Haar systems. It is also shown that the classical Dini convergence test does not apply, in general, even to generalized Haar systems, although the classical symmetric Dini test for generalized Haar systems is valid. Also upper bounds for the Dirichlet kernels for generalized Haar systems are obtained.
Keywords: Abelian group, modified closed interval $[0;1]$, continuity on the modified closed interval $[0;1]$, system of characters, Price system, generalized Haar system, Dirichlet kernels and their majorant, Dini test.
@article{MZM_2017_101_3_a10,
     author = {V. I. Shcherbakov},
     title = {Majorants of the {Dirichlet} {Kernels} and the {Dini} {Pointwise} {Tests} for {Generalized} {Haar} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {446--473},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a10/}
}
TY  - JOUR
AU  - V. I. Shcherbakov
TI  - Majorants of the Dirichlet Kernels and the Dini Pointwise Tests for Generalized Haar Systems
JO  - Matematičeskie zametki
PY  - 2017
SP  - 446
EP  - 473
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a10/
LA  - ru
ID  - MZM_2017_101_3_a10
ER  - 
%0 Journal Article
%A V. I. Shcherbakov
%T Majorants of the Dirichlet Kernels and the Dini Pointwise Tests for Generalized Haar Systems
%J Matematičeskie zametki
%D 2017
%P 446-473
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a10/
%G ru
%F MZM_2017_101_3_a10
V. I. Shcherbakov. Majorants of the Dirichlet Kernels and the Dini Pointwise Tests for Generalized Haar Systems. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 446-473. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a10/

[1] N. Ya. Vilenkin, “Ob odnom klasse polnykh ortonormalnykh sistem”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 363–400 | MR | Zbl

[2] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR | Zbl

[3] A. F. Monna, Analyse non-archimédienne, Ergeb. Math. Grenzgeb., 56, Springer-Verlag, Berlin, 1970 | MR | Zbl

[4] A. Yu. Khrennikov, V. M. Shelkovich, Sovremennyi $p$-adicheskii analiz i matematicheskaya fizika, teoriya i prilozheniya, Fizmatgiz, M., 2012

[5] B. I. Golubov, “Ob odnom klasse polnykh ortonormalnykh sistem”, Sib. matem. zhurn., 9:2 (1968), 297–314 | MR | Zbl

[6] N. K. Bari, Trigonometricheskie ryady, Nauka, M., 1961 | MR

[7] N. E. Komissarova, “Funktsii Lebega po sisteme Khaara na nul-mernykh kompaktnykh gruppakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:3 (2012), 30–36 | Zbl

[8] V. I. Scherbakov, “O potochechnoi skhodimosti ryadov Fure po multiplikativnym sistemam”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 2, 37–42 | Zbl

[9] C. W. Onneweer, D. Waterman, “Uniform convergence of Fourier series on groups. I”, Michigan Math. J., 18 (1971), 265–273 | MR | Zbl

[10] V. I. Scherbakov, “Priznak Dini–Lipshitsa i skhodimost ryadov Fure po multiplikativnym sistemam”, Anal. Math., 10:2 (1984), 133–150 | DOI | MR | Zbl

[11] J. J. Price, “Certain groups of orthonormal step functions”, Canad. J. Math., 9:3 (1957), 413–425 | MR | Zbl

[12] H. E. Chrestenson, “A class of generalized Walsh's functions”, Pacific J. Math., 5:1 (1955), 17–31 | DOI | MR | Zbl

[13] J. L. Walsh, “A closed set of normal orthogonal functions”, Amer. J. Math., 45:1 (1923), 5–24 | DOI | MR | Zbl

[14] R. E. A. C. Paley, “A remarkable series of orthogonal functions”, Proc. London Math. Soc., 34 (1932), 241–264 | DOI | MR | Zbl

[15] H. Rademacher, “Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen”, Math. Ann., 87:1-2 (1922), 112–138 | DOI | MR | Zbl

[16] B. I. Golubov, A. I. Rubinshtein, “Ob odnom klasse sistem skhodimosti”, Matem. sb., 71 (113):1 (1966), 96–115 | MR | Zbl

[17] A. Haar, “Zur Theorie der Orthogonalischen Functionsysteme”, Math Ann., 69 (1910), 331–371 | DOI | MR | Zbl

[18] E. A. Vlasova, Ryady po obobschennym sistemam Khaara, Avtoreferat dis. $\dots$ kand. fiz.-matem. nauk, M., 1987

[19] E. A. Vlasova, “Convergence of series with respect to generalized Haar systems”, Anal. Math., 13:4 (1987), 339–360 | DOI | MR | Zbl

[20] S. F. Lukomskii, “O ryadakh Khaara na kompaktnoi nul-mernoi gruppe”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 14–19

[21] V. I. Scherbakov, “Priznak Dini–Lipshitsa na obobschennykh sistemakh Khaara”, Sovremennye problemy teorii funktsii i ikh prilozheniya (Saratov, 27 yanvarya–3 fevralya 2014), Izd-vo “Nauchnaya kniga”, Saratovskii gos. un-t, Saratov, 2014, 307–308

[22] V. I. Scherbakov, “Raskhodimost ryadov Fure po obobschennym sistemam Khaara v tochkakh nepreryvnosti funktsii”, Izv. vuzov. Matem., 2016, no. 1, 49–68

[23] V. I. Scherbakov, “Priznak Dini po obobschennym sistemam Khaara”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Tr. matem. tsentra im. N. I. Lobachevskogo, 46, Kazanskii gos. un-t, Kazan, 2013, 469–472