Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 330-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the spectral properties of operator polynomials is reduced to the study of the spectral properties of the operator specified by the operator matrix. The results obtained are applied to higher-order difference operators. Conditions for their invertibility and for them to be Fredholm, as well as the asymptotic representation for bounded solutions of homogeneous difference equations are obtained.
Keywords: operator polynomial, difference operator, spectrum of an operator, kernel of an operator, image of an operator.
@article{MZM_2017_101_3_a1,
     author = {A. G. Baskakov and V. D. Kharitonov},
     title = {Spectral {Analysis} of {Operator} {Polynomials} and {Higher-Order} {Difference} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {330--345},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a1/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - V. D. Kharitonov
TI  - Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators
JO  - Matematičeskie zametki
PY  - 2017
SP  - 330
EP  - 345
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a1/
LA  - ru
ID  - MZM_2017_101_3_a1
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A V. D. Kharitonov
%T Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators
%J Matematičeskie zametki
%D 2017
%P 330-345
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a1/
%G ru
%F MZM_2017_101_3_a1
A. G. Baskakov; V. D. Kharitonov. Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 330-345. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a1/

[1] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR | Zbl

[2] A. B. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Izd-vo “Universitetskoe”, Minsk, 1988 | MR | Zbl

[3] A. Antonevich, A. Lebedev, Functional-Differential Equations. I. $C^*$-Theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Sci. Tech., Harlow, 1994 | MR | Zbl

[4] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of operators with the two-point Bohr spectrum”, J. Math. Anal. Appl., 308:2 (2005), 420–439 | DOI | MR | Zbl

[5] A. G. Baskakov, K. I. Chernyshov, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | DOI | MR | Zbl

[6] A. G. Baskakov, “Lineinye otnosheniya kak generatory polugrupp operatorov”, Matem. zametki, 84:2 (2008), 175–192 | DOI | MR | Zbl

[7] V. G. Kurbatov, Lineinye differentsialno-raznostnye uravneniya, Izd-vo Voronezhskogo un-ta, Voronezh, 1990 | MR | Zbl

[8] V. G. Kurbatov, Functional Differential Operators and Equations, Math. Appl., 473, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[9] Kh. L. Massera, Kh. Kh. Sheffer, Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970 | MR | Zbl

[10] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl

[11] M. Megan, A. L. Sasu, B. Sasu, “Discrete admissibility and exponential dichotomy for evolution families”, Discrete Contin. Dyn. Syst., 9:2 (2003), 383–397 | MR | Zbl

[12] A. Ya. Dorogovtsev, “Periodicity in distribution. I. Discrete systems”, Int. J. Math. Math. Sci., 30:2 (2002), 65–127 | DOI | MR | Zbl

[13] C. Chicone, Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[14] A. G. Baskakov, “Abstraktnyi garmonicheskii analiz i asimptoticheskie otsenki elementov obratnykh matrits”, Matem. zametki, 52:2 (1992), 17–26 | MR | Zbl

[15] A. G Baskakov, I. A. Krishtal, “Memory estimation of inverse operators”, J. Funct. Anal., 267:8 (2014), 2551–2605 | DOI | MR | Zbl

[16] A. G. Baskakov, “Otsenki funktsii Grina i parametrov eksponentsialnoi dikhotomii giperbolicheskoi polugruppy operatorov i lineinykh otnoshenii”, Matem. sb., 206:8 (2015), 23–62 | DOI | MR | Zbl

[17] A. G. Baskakov, A. Yu. Duplischeva, “Raznostnye operatory i operatornye matritsy vtorogo poryadka”, Izv. RAN. Ser. matem., 79:2 (2015), 3–20 | DOI | MR | Zbl

[18] A. G. Baskakov, A. I. Pastukhov, “Spektralnyi analiz operatora vzveshennogo sdviga s neogranichennymi operatornymi koeffitsientami”, Sib. matem. zhurn., 42:6 (2001), 1231–1243 | MR | Zbl

[19] A. G. Baskakov, “Ob obratimosti i fredgolmovosti raznostnykh operatorov”, Matem. zametki, 67:6 (2000), 816–827 | DOI | MR | Zbl

[20] A. G. Baskakov, “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (409) (2013), 77–128 | DOI | MR | Zbl

[21] A. G. Baskakov, “Garmonicheskii i spektralnyi analiz operatorov s ogranichennymi stepenyami i ogranichennykh polugrupp operatorov na banakhovom prostranstve”, Matem. zametki, 97:2 (2015), 174–190 | DOI | MR | Zbl

[22] M. S. Bichegkuev, “O spektre raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Funkts. analiz i ego pril., 44:1 (2010), 80–83 | DOI | MR | Zbl

[23] M. S. Bichegkuev, “K spektralnomu analizu raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Matem. sb., 204:11 (2013), 3–20 | DOI | MR | Zbl

[24] M. S. Bichegkuev, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami v vesovykh prostranstvakh funktsii”, Matem. zametki, 95:1 (2014), 18–25 | DOI | MR | Zbl

[25] A. A. Shkalikov, “Operator pencils arising in elasticity and hydrodynamics: the instability index formula”, Recent Developments in Operator Theory and Its Applications, Oper. Theory Adv. Appl., 87, Birkhäuser Verlag, Basel, 1996, 358–385 | DOI | MR | Zbl

[26] R. O. Griniv, A. A. Shkalikov, “Eksponentsialnaya ustoichivost polugrupp, svyazannykh s nekotorymi operatornymi modelyami v mekhanike”, Matem. zametki, 73:5 (2003), 657–664 | DOI | MR | Zbl

[27] A. G. Baskakov, “Ob obratimosti lineinykh raznostnykh operatorov s postoyannymi koeffitsientami”, Izv. vuzov. Matem., 2001, no. 5, 3–11 | MR | Zbl