Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 330-345
Voir la notice de l'article provenant de la source Math-Net.Ru
The study of the spectral properties of operator polynomials is reduced to the study of the spectral properties of the operator specified by the operator matrix. The results obtained are applied to higher-order difference operators. Conditions for their invertibility and for them to be Fredholm, as well as the asymptotic representation for bounded solutions of homogeneous difference equations are obtained.
Keywords:
operator polynomial, difference operator, spectrum of an operator, kernel of an operator, image of an operator.
@article{MZM_2017_101_3_a1,
author = {A. G. Baskakov and V. D. Kharitonov},
title = {Spectral {Analysis} of {Operator} {Polynomials} and {Higher-Order} {Difference} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {330--345},
publisher = {mathdoc},
volume = {101},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a1/}
}
TY - JOUR AU - A. G. Baskakov AU - V. D. Kharitonov TI - Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators JO - Matematičeskie zametki PY - 2017 SP - 330 EP - 345 VL - 101 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a1/ LA - ru ID - MZM_2017_101_3_a1 ER -
A. G. Baskakov; V. D. Kharitonov. Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 330-345. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a1/