On Residually Finite Groups of Finite General Rank
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 323-329

Voir la notice de l'article provenant de la source Math-Net.Ru

Following A. I. Maltsev, we say that a group $G$ has finite general rank if there is a positive integer $r$ such that every finite set of elements of $G$ is contained in some $r$-generated subgroup. Several known theorems concerning finitely generated residually finite groups are generalized here to the case of residually finite groups of finite general rank. For example, it is proved that the families of all finite homomorphic images of a residually finite group of finite general rank and of the quotient of the group by a nonidentity normal subgroup are different. Special cases of this result are a similar result of Moldavanskii on finitely generated residually finite groups and the following assertion: every residually finite group of finite general rank is Hopfian. This assertion generalizes a similar Maltsev result on the Hopf property of every finitely generated residually finite group.
Keywords: group of finite rank, residual finiteness.
@article{MZM_2017_101_3_a0,
     author = {D. N. Azarov},
     title = {On {Residually} {Finite} {Groups} of {Finite} {General} {Rank}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--329},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - On Residually Finite Groups of Finite General Rank
JO  - Matematičeskie zametki
PY  - 2017
SP  - 323
EP  - 329
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a0/
LA  - ru
ID  - MZM_2017_101_3_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T On Residually Finite Groups of Finite General Rank
%J Matematičeskie zametki
%D 2017
%P 323-329
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a0/
%G ru
%F MZM_2017_101_3_a0
D. N. Azarov. On Residually Finite Groups of Finite General Rank. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a0/