On Residually Finite Groups of Finite General Rank
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 323-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following A. I. Maltsev, we say that a group $G$ has finite general rank if there is a positive integer $r$ such that every finite set of elements of $G$ is contained in some $r$-generated subgroup. Several known theorems concerning finitely generated residually finite groups are generalized here to the case of residually finite groups of finite general rank. For example, it is proved that the families of all finite homomorphic images of a residually finite group of finite general rank and of the quotient of the group by a nonidentity normal subgroup are different. Special cases of this result are a similar result of Moldavanskii on finitely generated residually finite groups and the following assertion: every residually finite group of finite general rank is Hopfian. This assertion generalizes a similar Maltsev result on the Hopf property of every finitely generated residually finite group.
Keywords: group of finite rank, residual finiteness.
@article{MZM_2017_101_3_a0,
     author = {D. N. Azarov},
     title = {On {Residually} {Finite} {Groups} of {Finite} {General} {Rank}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--329},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - On Residually Finite Groups of Finite General Rank
JO  - Matematičeskie zametki
PY  - 2017
SP  - 323
EP  - 329
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a0/
LA  - ru
ID  - MZM_2017_101_3_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T On Residually Finite Groups of Finite General Rank
%J Matematičeskie zametki
%D 2017
%P 323-329
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a0/
%G ru
%F MZM_2017_101_3_a0
D. N. Azarov. On Residually Finite Groups of Finite General Rank. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a0/

[1] B. Chandler, V. Magnus, Razvitie kombinatornoi teorii grupp. Ocherk istorii razvitiya idei, Mir, M., 1985 | MR | Zbl

[2] A. I. Maltsev, “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Matem. sb., 8 (50):3 (1940), 405–422 | MR | Zbl

[3] A. I. Maltsev, “Obobschenno nilpotentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25 (67):3 (1949), 347–366 | MR | Zbl

[4] D. I. Moldavanskii, “Dva zamechaniya o finitno approksimiruemykh gruppakh s odinakovymi semeistvami konechnykh gomomorfnykh obrazov”, Nauch. tr. Ivanovskogo gos. un-ta, 4 (2001), 83–87

[5] A. I. Maltsev, “O gruppakh konechnogo ranga”, Matem. sb., 22 (64):2 (1948), 351–352 | MR | Zbl

[6] D. M. Smirnov, “K teorii finitno approksimiruemykh grupp”, Ukr. matem. zhurn., 15 (1962), 453–457

[7] G. Baumslag, “Automorphism groups of residually finite groups”, J. London Math. Soc., 38 (1963), 117–118 | DOI | MR | Zbl

[8] A. I. Maltsev, “O gomomorfizmakh na konechnye gruppy”, Uch. zap. Ivanovskogo gos. ped. in-ta, 18 (1958), 49–60

[9] D. N. Azarov, “O pochti approksimiruemosti konechnymi $p$-gruppami”, Chebyshevskii sb., 11:3 (2010), 11–21 | Zbl

[10] R. B. J. T. Allenby, R. J. Gregorac, “On locally extended residually finite groups”, Conference on Group Theory, Lecture Notes Math., 319, Springer-Verlag, Berlin, 1973, 9–17 | DOI | MR | Zbl

[11] D. N. Azarov, “O finitnoi approksimiruemosti HNN-rasshirenii i obobschennykh svobodnykh proizvedenii grupp konechnogo ranga”, Sib. matem. zhurn., 54:6 (2013), 1203–1215 | MR | Zbl

[12] D. N. Azarov, “O pochti approksimiruemosti konechnymi $p$-gruppami niskhodyaschikh HNN-rasshirenii grupp”, Chebyshevskii sb., 13:1 (2012), 9–19 | MR | Zbl

[13] J. C. Lennox, D. J. S. Robinson, The Theory of Infinite Soluble Groups, Clarendon press, Oxford, 2004 | MR | Zbl

[14] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl