Specific Features of the Study of Nonautonomous Differential Equations with Exponential-Type Matrices
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 226-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for the spectral analysis of nonautonomous systems of differential equations on the semiaxis whose matrix can be presented as the sum of exponential-type matrices is developed. This method, which is based on a version of the splitting method, allows us to prove a theorem stating that the initial system is almost reducible to a simpler equivalent system and to formulate a sufficient condition for the asymptotic stability and the stability of its trivial solution.
Keywords: nonautonomous system of ordinary differential equations, splitting method, asymptotic reducibility, stability.
@article{MZM_2017_101_2_a7,
     author = {Yu. A. Konyaev and D. A. Maslov},
     title = {Specific {Features} of the {Study} of {Nonautonomous} {Differential} {Equations} with {Exponential-Type} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {226--231},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a7/}
}
TY  - JOUR
AU  - Yu. A. Konyaev
AU  - D. A. Maslov
TI  - Specific Features of the Study of Nonautonomous Differential Equations with Exponential-Type Matrices
JO  - Matematičeskie zametki
PY  - 2017
SP  - 226
EP  - 231
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a7/
LA  - ru
ID  - MZM_2017_101_2_a7
ER  - 
%0 Journal Article
%A Yu. A. Konyaev
%A D. A. Maslov
%T Specific Features of the Study of Nonautonomous Differential Equations with Exponential-Type Matrices
%J Matematičeskie zametki
%D 2017
%P 226-231
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a7/
%G ru
%F MZM_2017_101_2_a7
Yu. A. Konyaev; D. A. Maslov. Specific Features of the Study of Nonautonomous Differential Equations with Exponential-Type Matrices. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 226-231. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a7/

[1] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, MIR, M., 1968 | Zbl

[2] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Izd-vo Mosk. un-ta, M., 1998

[3] Yu. A. Konyaev, “O nekotorykh metodakh issledovaniya ustoichivosti”, Matem. sb., 192:3 (2001), 65–82 | DOI | MR | Zbl

[4] Yu. A. Konyaev, Yu. G. Martynenko, “Asimptoticheskii analiz reshenii differentsialnykh uravnenii s polinomialno periodicheskimi koeffitsientami”, Izv. vuzov. Matem., 2006, no. 1, 78–81 | MR | Zbl

[5] Yu. A. Konyaev, D. M. Mikhailov, E. Yu. Romanova, “Asimptoticheskii analiz odnoi giroskopicheskoi sistemy”, Differents. uravneniya, 49:6 (2013), 789–793 | MR | Zbl

[6] Yu. A. Konyaev, Nguen Vet Khoa, “Spektralnyi analiz nekotorykh klassov neavtonomnykh sistem s periodicheskoi i polinomialno periodicheskoi matritsami”, Vestn. Nats. issled. yad. un-ta MIFI, 3:3 (2014), 290–296

[7] A. P. Kartashev, B. L. Rozhdestvenskii, Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980 | MR | Zbl