Uniqueness Theorem for Multiple Franklin Series
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 199-210

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the proof of the uniqueness theorem for multiple series in the Franklin system that converge in measure and whose majorant of cubic partial sums with numbers $2^\nu$ satisfies a certain necessary condition. This result is new in the one-dimensional case as well.
Keywords: multiple series, Franklin system, uniqueness.
@article{MZM_2017_101_2_a4,
     author = {G. G. Gevorkyan},
     title = {Uniqueness {Theorem} for {Multiple} {Franklin} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {199--210},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a4/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - Uniqueness Theorem for Multiple Franklin Series
JO  - Matematičeskie zametki
PY  - 2017
SP  - 199
EP  - 210
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a4/
LA  - ru
ID  - MZM_2017_101_2_a4
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T Uniqueness Theorem for Multiple Franklin Series
%J Matematičeskie zametki
%D 2017
%P 199-210
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a4/
%G ru
%F MZM_2017_101_2_a4
G. G. Gevorkyan. Uniqueness Theorem for Multiple Franklin Series. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 199-210. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a4/