Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_2_a4, author = {G. G. Gevorkyan}, title = {Uniqueness {Theorem} for {Multiple} {Franklin} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {199--210}, publisher = {mathdoc}, volume = {101}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a4/} }
G. G. Gevorkyan. Uniqueness Theorem for Multiple Franklin Series. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 199-210. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a4/
[1] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100 (1928), 522–528 | DOI | MR | Zbl
[2] Z. Ciesielski, “Properties of the orthonormal Franklin system”, Studia Math., 23 (1963), 141–157 | MR | Zbl
[3] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27 (1966), 289–323 | MR | Zbl
[4] S. V. Bochkarev, “Some inequalities for the Franklin series”, Anal. Math., 1:4 (1975), 249–257 | DOI | MR | Zbl
[5] P. Wojtaszczyk, “The Franklin system is an unconditional basis in $H^1$”, Ark. Mat., 20:2 (1982), 293–300 | DOI | MR | Zbl
[6] G. G. Gevorkyan, “O ryadakh po sisteme Franklina”, Uch. zap. Erevansk. gos. un-ta. Estestv. nauki, 2 (162) (1986), 146–148 | MR
[7] G. G. Gevorkyan, A. Kamont, “On the uniqueness of series with respect to general Franklin systems”, J. Contemp. Math. Anal., 44:5 (2009), 271–283 | DOI | MR | Zbl
[8] G. G. Gevorkyan, “O edinstvennosti ryadov po sisteme Franklina”, Matem. zametki, 46:2 (1989), 51–58 | MR | Zbl
[9] M. P. Pogosyan, “O edinstvennosti ryadov po obschei sisteme Franklina”, Izv. NAN Armenii. Ser. matem., 35:4 (2000), 75–81
[10] G. G. Gevorkyan, “Mazhoranta i edinstvennost ryadov po sisteme Franklina”, Matem. zametki, 59:4 (1996), 521–545 | DOI | MR | Zbl
[11] G. G. Gevorkyan, “Teoremy edinstvennosti dlya ryadov po sisteme Franklina”, Matem. zametki, 98:5 (2015), 786–789 | DOI | Zbl
[12] M. Gusman, Differentsirovanie integralov v $\mathbb R^n$, Matematika. Novoe v zarubezhnoi nauke, 9, Mir, M., 1978 | MR | Zbl