On Some Matrix Analogs of the Little Fermat Theorem
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 163-168
Voir la notice de l'article provenant de la source Math-Net.Ru
The rings over which every square matrix is representable as a sum of a nilpotent matrix and a $q$-potent matrix, where $q$ is a positive integer power of a prime, are studied. As consequences, matrix analogs of the little Fermat theorem are obtained.
Keywords:
nil clean rings, regular rings, little Fermat theorem.
@article{MZM_2017_101_2_a0,
author = {A. N. Abyzov and I. I. Mukhametgaliev},
title = {On {Some} {Matrix} {Analogs} of the {Little} {Fermat} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--168},
publisher = {mathdoc},
volume = {101},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a0/}
}
A. N. Abyzov; I. I. Mukhametgaliev. On Some Matrix Analogs of the Little Fermat Theorem. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 163-168. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a0/