On Some Matrix Analogs of the Little Fermat Theorem
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 163-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The rings over which every square matrix is representable as a sum of a nilpotent matrix and a $q$-potent matrix, where $q$ is a positive integer power of a prime, are studied. As consequences, matrix analogs of the little Fermat theorem are obtained.
Keywords: nil clean rings, regular rings, little Fermat theorem.
@article{MZM_2017_101_2_a0,
     author = {A. N. Abyzov and I. I. Mukhametgaliev},
     title = {On {Some} {Matrix} {Analogs} of the {Little} {Fermat} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--168},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - I. I. Mukhametgaliev
TI  - On Some Matrix Analogs of the Little Fermat Theorem
JO  - Matematičeskie zametki
PY  - 2017
SP  - 163
EP  - 168
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a0/
LA  - ru
ID  - MZM_2017_101_2_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A I. I. Mukhametgaliev
%T On Some Matrix Analogs of the Little Fermat Theorem
%J Matematičeskie zametki
%D 2017
%P 163-168
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a0/
%G ru
%F MZM_2017_101_2_a0
A. N. Abyzov; I. I. Mukhametgaliev. On Some Matrix Analogs of the Little Fermat Theorem. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 163-168. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a0/