Dirichlet Problem for the Stokes Equation
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 110-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents some coercive a priori estimates of the solution of the Dirichlet problem for the linear Stokes equation relating vorticity and the stream function of an axially symmetric flow of an incompressible fluid. This equation degenerates on the axis of symmetry. The method used to obtain the estimates is based on a differential substitution transforming the Stokes equation into the Laplace equation and on the subsequent transition from cylindrical to Cartesian coordinates in three-dimensional space.
Keywords: flow-through problem, Stokes equation, coercive a priori estimates.
@article{MZM_2017_101_1_a9,
     author = {V. V. Pukhnachov},
     title = {Dirichlet {Problem} for the {Stokes} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {110--115},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a9/}
}
TY  - JOUR
AU  - V. V. Pukhnachov
TI  - Dirichlet Problem for the Stokes Equation
JO  - Matematičeskie zametki
PY  - 2017
SP  - 110
EP  - 115
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a9/
LA  - ru
ID  - MZM_2017_101_1_a9
ER  - 
%0 Journal Article
%A V. V. Pukhnachov
%T Dirichlet Problem for the Stokes Equation
%J Matematičeskie zametki
%D 2017
%P 110-115
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a9/
%G ru
%F MZM_2017_101_1_a9
V. V. Pukhnachov. Dirichlet Problem for the Stokes Equation. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 110-115. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a9/

[1] J. Leray, “Etude de diverses équations intégrals non linéaires et de quelques problèmes que pose l'hydodynamique”, J. Math. Pures Appl., 12 (1933), 1–82 | Zbl

[2] M. V. Korobkov, K. Piletskas, V. V. Pukhnachev, R. Russo, “Zadacha protekaniya dlya uravnenii Nave–Stoksa”, UMN, 69:6 (420) (2014), 115–176 | DOI | MR | Zbl

[3] M. V. Korobkov, K. Pileckas, R. Russo, “Solution of Leray problem for stationary Navier–Stokes equations in plane and axially symmetric spatial domains”, Ann. of Math. (2), 181:2 (2015), 769–807 | DOI | MR | Zbl

[4] H. Fujita, “On the existence and regularity of the staedy-state solutions of the Navier–Stokes equations”, J. Fac. Sci. Univ. Tokyo Sect. I, 9 (1961), 59–102 | MR | Zbl

[5] R. Finn, “On steady-state solutions of the Navier–Stokes equations. III”, Acta Math., 105 (1961), 197–244 | DOI | MR | Zbl

[6] H. Fujita, H. Morimoto, “A remark on the existence of the Navier–Stokes flow with non-vanishing outflow conditions”, Nonlinear Waves, GAKUTO Int. Ser. Math. Sci. Appl., 10, Gakkotosho, Tokyo, 1997, 53–61 | MR | Zbl

[7] V. V. Pukhnachev, “Trekhmernaya simmetrichnaya zadacha protekaniya dlya uravnenii Nave–Stoksa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 95–104 | DOI | Zbl

[8] V. I. Polezhaev, A. V. Bune, N. A. Verezub i dr., Matematicheskoe modelirovanie konvektivnogo teploobmena na osnove uravnenii Nave–Stoksa, Nauka, M., 1987

[9] G. V. Alekseev, V. V. Pukhnachev, “Osesimmetrichnaya zadacha protekaniya dlya uravnenii Nave–Stoksa v peremennykh zavikhrennost – funktsiya toka”, Dokl. RAN, 445:4 (2012), 402–406 | MR

[10] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR | Zbl

[11] A. A. Kovalevskii, I. I. Skrypnik, A. E. Shishkov, Singulyarnye resheniya nelineinykh ellipticheskikh i parabolicheskikh uravnenii, Naukova dumka, Kiev, 2010 | MR

[12] S. Agmon, A. Duglis, L. Nirenberg, Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962