On the Equation $\Delta u+q(x)u=0$
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 101-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the blow-up of nontrivial generalized solutions of the interior Dirichlet problem with homogeneous boundary condition for the homogeneous elliptic-type equation $\Delta u+q(x)u=0$, where either $q(x)\ne\mathrm{const}$ or $q(x)=\mathrm{const}=\lambda>0$, are obtained. A priori upper bounds (Theorem 4 and Remark 6) for the exact constants in the well-known Sobolev and Steklov inequalities are established.
Keywords: generalized solution, Dirichlet problem, Sobolev inequality, Steklov inequality
Mots-clés : Fourier transform.
@article{MZM_2017_101_1_a8,
     author = {Sh. M. Nasibov},
     title = {On the {Equation} $\Delta u+q(x)u=0$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {101--109},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a8/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - On the Equation $\Delta u+q(x)u=0$
JO  - Matematičeskie zametki
PY  - 2017
SP  - 101
EP  - 109
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a8/
LA  - ru
ID  - MZM_2017_101_1_a8
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T On the Equation $\Delta u+q(x)u=0$
%J Matematičeskie zametki
%D 2017
%P 101-109
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a8/
%G ru
%F MZM_2017_101_1_a8
Sh. M. Nasibov. On the Equation $\Delta u+q(x)u=0$. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 101-109. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a8/

[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[2] B. C. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[3] V. A. Steklov, “O razlozhenii dannoi funktsii v ryad po garmonicheskim funktsiyam”, Soobsch. Kharkovskogo matem. ob-va. Ser. 2, 5:1/2 (1896), 60–73

[4] B. C. Vladimirov, I. I. Markush, Vladimir Andreevich Steklov – uchenyi i organizator nauki, Nauka, M., 1981 | MR | Zbl

[5] B. V. Nagy, “Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung”, Acta Univ. Szeged. Sect. Sci. Math., 10 (1941), 64–74 | MR | Zbl

[6] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniyu Shrëdingera”, Dokl. AN SSSR, 307:3 (1989), 538–542 | MR

[7] E. H. Lieb, “Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities”, Ann. Math., 118 (1983), 349–374 | DOI | MR | Zbl

[8] E. H. Lieb, M. Loss, Analysis, Gradute Stud. in Math., 14, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[9] A. G. Ramm, “Teorema edinstvennosti dlya resheniya zadachi Dirikhle”, Sib. matem. zhurn., 19:6 (1978), 1421–1423 | MR | Zbl

[10] J. Mossino, Inégalités isopérimétriques et applications en physique, Paris, 1984 | MR | Zbl

[11] S. I. Pokhozhaev, “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, Dokl. AN SSSR, 165:1 (1965), 36–39 | MR | Zbl

[12] Kh. Brezis, “Kriticheskie tochki variatsionnykh zadach bez usloviya kompaktnosti”, Tr. sem. N. Burbaki, 46, Mir, M., 1990, 252–269

[13] E. J. M. Veling, “Lower bounds for the infimum of the spectrum of the Schrödinger operator in $\mathbb R^N$ and the Sobolev inequalities”, J. Inequal. Pure Appl. Math., 3:4 (2002), Article 63 | MR | Zbl