On the Equation $\Delta u+q(x)u=0$
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 101-109

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the blow-up of nontrivial generalized solutions of the interior Dirichlet problem with homogeneous boundary condition for the homogeneous elliptic-type equation $\Delta u+q(x)u=0$, where either $q(x)\ne\mathrm{const}$ or $q(x)=\mathrm{const}=\lambda>0$, are obtained. A priori upper bounds (Theorem 4 and Remark 6) for the exact constants in the well-known Sobolev and Steklov inequalities are established.
Keywords: generalized solution, Dirichlet problem, Sobolev inequality, Steklov inequality
Mots-clés : Fourier transform.
@article{MZM_2017_101_1_a8,
     author = {Sh. M. Nasibov},
     title = {On the {Equation} $\Delta u+q(x)u=0$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {101--109},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a8/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - On the Equation $\Delta u+q(x)u=0$
JO  - Matematičeskie zametki
PY  - 2017
SP  - 101
EP  - 109
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a8/
LA  - ru
ID  - MZM_2017_101_1_a8
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T On the Equation $\Delta u+q(x)u=0$
%J Matematičeskie zametki
%D 2017
%P 101-109
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a8/
%G ru
%F MZM_2017_101_1_a8
Sh. M. Nasibov. On the Equation $\Delta u+q(x)u=0$. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 101-109. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a8/