The One-Dimensional Riemann Problem on an Elliptic Curve
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 91-100
Cet article a éte moissonné depuis la source Math-Net.Ru
A one-dimensional generalization of the Riemann–Hilbert problem from the Riemann sphere to an elliptic curve is considered. A criterion for its positive solvability is obtained and the explicit form of all possible solutions is found. As in the spherical case, the solutions turn out to be isomonodromic.
Keywords:
Riemann problem, elliptic curve, logarithmic connection.
@article{MZM_2017_101_1_a7,
author = {A. A. Matveeva and V. A. Poberezhnyi},
title = {The {One-Dimensional} {Riemann} {Problem} on an {Elliptic} {Curve}},
journal = {Matemati\v{c}eskie zametki},
pages = {91--100},
year = {2017},
volume = {101},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a7/}
}
A. A. Matveeva; V. A. Poberezhnyi. The One-Dimensional Riemann Problem on an Elliptic Curve. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 91-100. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a7/
[1] A. A. Bolibrukh, “21-ya problema Gilberta dlya lineinykh fuksovykh sistem”, Tr. MIAN, 206, Nauka, M., 1994, 3–158 | MR | Zbl
[2] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009
[3] R. R. Gontsov, V. A. Poberezhnyi, “Razlichnye varianty problemy Rimana–Gilberta dlya lineinykh differentsialnykh uravnenii”, UMN, 63:4 (382) (2008), 3–42 | DOI | MR | Zbl
[4] V. V. Prasolov, Yu. P. Solovev, Ellipticheskie funktsii i algebraicheskie uravneniya, Faktorial, M., 1997