On the Additive Energy of the Heilbronn Subgroup
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 43-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new upper bound for the additive energy of the Heilbronn subgroup is found. Several applications to the distribution of Fermat quotients are obtained.
Keywords: Heilbronn's trigonometric sum, Heilbronn subgroup, Stepanov's method, additive energy
Mots-clés : convolution.
@article{MZM_2017_101_1_a3,
     author = {I. V. Vyugin and E. V. Solodkova and I. D. Shkredov},
     title = {On the {Additive} {Energy} of the {Heilbronn} {Subgroup}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {43--57},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a3/}
}
TY  - JOUR
AU  - I. V. Vyugin
AU  - E. V. Solodkova
AU  - I. D. Shkredov
TI  - On the Additive Energy of the Heilbronn Subgroup
JO  - Matematičeskie zametki
PY  - 2017
SP  - 43
EP  - 57
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a3/
LA  - ru
ID  - MZM_2017_101_1_a3
ER  - 
%0 Journal Article
%A I. V. Vyugin
%A E. V. Solodkova
%A I. D. Shkredov
%T On the Additive Energy of the Heilbronn Subgroup
%J Matematičeskie zametki
%D 2017
%P 43-57
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a3/
%G ru
%F MZM_2017_101_1_a3
I. V. Vyugin; E. V. Solodkova; I. D. Shkredov. On the Additive Energy of the Heilbronn Subgroup. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 43-57. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a3/

[1] D. R. Heath–Brown, “An estimate for Heilbronn's exponential sum”, Analytic Number Theory, Vol. 2 (Allerton Park, IL 1995), Progr. Math., 139, Birkhäuser Boston, Boston, MA, 1996, 451–463 | MR | Zbl

[2] D. R. Heath-Brown, S. V. Konyagin, “New bounds for Gauss sums derived from $k$th powers, and for Heilbronn's exponential sum”, Q. J. Math., 51:2 (2000), 221–235 | DOI | MR | Zbl

[3] I. D. Shkredov, “On Heilbronn's exponential sum”, Q. J. Math., 64:4 (2013), 1221–1230 | DOI | Zbl

[4] I. D. Shkredov, “On exponential sums over multiplicative subgroups of medium size”, Finite Fields Appl., 30 (2014), 72–87 | DOI | MR | Zbl

[5] H. B. Yu, “Note on Heath-Brown estimate for Heilbronn's exponential sum”, Proc. Amer. Math. Soc., 127:7 (1999), 1995–1998 | DOI | MR | Zbl

[6] I. D. Shkredov, “Some new inequalities in additive combinatorics”, Mosc. J. Comb. Number Theory, 3:3-4 (2013), 237–288 | MR | Zbl

[7] S. A. Stepanov, “O chisle tochek giperellipticheskoi krivoi nad prostym konechnym polem”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1171–1181 | MR | Zbl

[8] S. V. Konyagin, “Otsenki dlya trigonometricheskikh summ na podgruppy i dlya gaussovykh summ”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, Aktualnye problemy. Ch. 3 (Tula, 2001), Izd-vo Mosk. un-ta, M., 2002, 86–114 | Zbl

[9] I. V. Vyugin, E. V. Solodkova, I. D. Shkredov, “Peresecheniya sdvigov multiplikativnykh podgrupp”, Matem. zametki, 100:2 (2016), 185–195 | DOI

[10] J. Bourgain, K. Ford, S. V. Konyagin, I. E. Shparlinski, “On the Divisibility of Fermat Quotients”, Michigan Math. J., 59:2 (2010), 313–328 | DOI | MR | Zbl

[11] M.-C. Chang, “Short character sums with Fermat quotients”, Acta Arith., 152:1 (2012), 23–38 | DOI | MR | Zbl

[12] H. W. Lenstra, “Miller's primality test”, Inform. Process. Lett., 8:2 (1979), 86–88 | DOI | MR | Zbl

[13] A. Ostafe, I. E. Shparlinski, “Pseudorandomness and dynamics of Fermat quotients”, SIAM J. Discrete Math., 25:1 (2011), 50–71 | DOI | MR | Zbl

[14] I. E. Shparlinski, “On the value set of Fermat quotients”, Proc. Amer. Math. Soc., 140:4 (2012), 1199–1206 | DOI | MR | Zbl

[15] I. E. Shparlinski, “On vanishing Fermat quotients and a bound of the Ihara sum”, Kodai Math. J., 36:1 (2013), 99–108 | MR | Zbl

[16] W. Rudin, Fourier Analysis on Groups, John Wiley Sons, New York, 1990 | MR | Zbl

[17] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. in Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[18] T. Schoen, I. D. Shkredov, “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl

[19] Yu. V. Malykhin, “Otsenki trigonometricheskikh summ po modulyu $p^2$”, Fundament. i prikl. matem., 11:6 (2005), 81–94 | MR | Zbl

[20] T. Schoen, I. D. Shkredov, “Additive properties of multiplicative subgroups of $\mathbb F_p$”, Q. J. Math., 63:3 (2012), 713–722 | DOI | MR | Zbl

[21] I. D. Shkredov, “Neskolko novykh rezultatov o starshikh energiyakh”, Tr. MMO, 74, no. 1, MTsNMO, M., 2013, 35–73 | MR | Zbl

[22] Yu. N. Shteinikov, “Otsenki trigonometricheskikh summ po podgruppam i nekotorye ikh prilozheniya”, Matem. zametki, 98:4 (2015), 606–625 | DOI | Zbl

[23] A. Granville, “Some conjectures related to Fermat's last theorem”, Number Theory, de Gruyter, New York, 1990, 177–192 | MR | Zbl

[24] Yu. V. Malykhin, “Otsenki trigonometricheskikh summ po modulyu $p^r$”, Matem. zametki, 80:5 (2006), 793–796 | DOI | MR | Zbl