Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_1_a2, author = {A. I. Barsukov and O. G. Konyukhva}, title = {Functions {Inverse} to {Weakly} {Hyperbolic} and {Hyperbolic} {Pencils}}, journal = {Matemati\v{c}eskie zametki}, pages = {31--42}, publisher = {mathdoc}, volume = {101}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a2/} }
A. I. Barsukov; O. G. Konyukhva. Functions Inverse to Weakly Hyperbolic and Hyperbolic Pencils. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a2/
[1] A. S. Markus, Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl
[2] T. Ya. Azizov, A. Dijksma, K.-H. Förster, P. Jonas, “Quadratic (weakly) hyperbolic matrix polynomials: direct and inverse spectral problems”, Recent Advances in Operator Theory in Hilbert and Krein Spaces, Oper. Theory. Adv. Appl., 198, Birkhäuser Verlag, Basel, 2010, 11–40 | MR | Zbl
[3] W. F. Donoghue, “Monotone matrix functions and analytic continuation”, Grundlehren Math. Wiss., 207, Springer-Verlag, Berlin, 1974 | MR | Zbl
[4] I. S. Kats, M. G. Krein, “$R$-funktsii – analiticheskie funktsii, otobrazhayuschie verkhnyuyu poluploskost v sebya”, Dopolnenie 1: F. V. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 629–642 | MR