Functions Inverse to Weakly Hyperbolic and Hyperbolic Pencils
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions under which a matrix-valued function of a complex argument is inverse to a weakly hyperbolic or a hyperbolic pencil are established. For hyperbolic pencils, a constructive description of the inverse functions in terms of their partial fraction expansion with matrix coefficients is presented.
Keywords: rational matrix functions, weakly hyperbolic matrix pencils, hyperbolic matrix pencils, root zones of a pencil, Nevanlinna functions.
@article{MZM_2017_101_1_a2,
     author = {A. I. Barsukov and O. G. Konyukhva},
     title = {Functions {Inverse} to {Weakly} {Hyperbolic} and {Hyperbolic} {Pencils}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a2/}
}
TY  - JOUR
AU  - A. I. Barsukov
AU  - O. G. Konyukhva
TI  - Functions Inverse to Weakly Hyperbolic and Hyperbolic Pencils
JO  - Matematičeskie zametki
PY  - 2017
SP  - 31
EP  - 42
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a2/
LA  - ru
ID  - MZM_2017_101_1_a2
ER  - 
%0 Journal Article
%A A. I. Barsukov
%A O. G. Konyukhva
%T Functions Inverse to Weakly Hyperbolic and Hyperbolic Pencils
%J Matematičeskie zametki
%D 2017
%P 31-42
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a2/
%G ru
%F MZM_2017_101_1_a2
A. I. Barsukov; O. G. Konyukhva. Functions Inverse to Weakly Hyperbolic and Hyperbolic Pencils. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a2/

[1] A. S. Markus, Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[2] T. Ya. Azizov, A. Dijksma, K.-H. Förster, P. Jonas, “Quadratic (weakly) hyperbolic matrix polynomials: direct and inverse spectral problems”, Recent Advances in Operator Theory in Hilbert and Krein Spaces, Oper. Theory. Adv. Appl., 198, Birkhäuser Verlag, Basel, 2010, 11–40 | MR | Zbl

[3] W. F. Donoghue, “Monotone matrix functions and analytic continuation”, Grundlehren Math. Wiss., 207, Springer-Verlag, Berlin, 1974 | MR | Zbl

[4] I. S. Kats, M. G. Krein, “$R$-funktsii – analiticheskie funktsii, otobrazhayuschie verkhnyuyu poluploskost v sebya”, Dopolnenie 1: F. V. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 629–642 | MR