Ring of Operations from Morava K-Theories to Chow Groups
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 150-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: orientable cohomology theories, Morava K-theory.
@article{MZM_2017_101_1_a14,
     author = {P. A. Sechin},
     title = {Ring of {Operations} from {Morava} {K-Theories} to {Chow} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {150--154},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a14/}
}
TY  - JOUR
AU  - P. A. Sechin
TI  - Ring of Operations from Morava K-Theories to Chow Groups
JO  - Matematičeskie zametki
PY  - 2017
SP  - 150
EP  - 154
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a14/
LA  - ru
ID  - MZM_2017_101_1_a14
ER  - 
%0 Journal Article
%A P. A. Sechin
%T Ring of Operations from Morava K-Theories to Chow Groups
%J Matematičeskie zametki
%D 2017
%P 150-154
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a14/
%G ru
%F MZM_2017_101_1_a14
P. A. Sechin. Ring of Operations from Morava K-Theories to Chow Groups. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 150-154. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a14/

[1] A. Vishik, Stable and Unstable Operations in Algebraic Cobordism, Preprint, Cornell University, 2012

[2] M. Levine, F. Morel, Algebraic Cobordism, Springer, Berlin, 2007 | MR | Zbl

[3] I. Panin, Homology, Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl

[4] A. Vishik, Operations and Poly-Operations in Algebraic Cobordism, Preprint, Cornell University, 2014

[5] T. Kashiwabara, J. Pure Appl. Algebra, 94:2 (1994), 183–193 | DOI | MR | Zbl

[6] A. M. Robert, A Course in $p$-Adic Analysis, Grad. Texts in Math., 198, Springer, New York, 2000 | Zbl

[7] N. Petrov, V. Semenov, Morava $K$-theory of Twisted Flag Varieties, Preprint, Cornell University, 2014