Ring of Operations from Morava K-Theories to Chow Groups
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 150-154
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
orientable cohomology theories, Morava K-theory.
@article{MZM_2017_101_1_a14,
author = {P. A. Sechin},
title = {Ring of {Operations} from {Morava} {K-Theories} to {Chow} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {150--154},
year = {2017},
volume = {101},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a14/}
}
P. A. Sechin. Ring of Operations from Morava K-Theories to Chow Groups. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 150-154. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a14/
[1] A. Vishik, Stable and Unstable Operations in Algebraic Cobordism, Preprint, Cornell University, 2012
[2] M. Levine, F. Morel, Algebraic Cobordism, Springer, Berlin, 2007 | MR | Zbl
[3] I. Panin, Homology, Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl
[4] A. Vishik, Operations and Poly-Operations in Algebraic Cobordism, Preprint, Cornell University, 2014
[5] T. Kashiwabara, J. Pure Appl. Algebra, 94:2 (1994), 183–193 | DOI | MR | Zbl
[6] A. M. Robert, A Course in $p$-Adic Analysis, Grad. Texts in Math., 198, Springer, New York, 2000 | Zbl
[7] N. Petrov, V. Semenov, Morava $K$-theory of Twisted Flag Varieties, Preprint, Cornell University, 2014