A Projection-Difference Scheme with Economical Operator for the Stokes Evolution Equation in the Cylinder with a Small Hole
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 140-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: nonstationary Stokes boundary-value problem, cylindrical coordinates, domain with small hole, estimate of the rate of convergence.
@article{MZM_2017_101_1_a12,
     author = {E. I. Aksenova},
     title = {A {Projection-Difference} {Scheme} with {Economical} {Operator} for the {Stokes} {Evolution} {Equation} in the {Cylinder} with a {Small} {Hole}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {140--144},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a12/}
}
TY  - JOUR
AU  - E. I. Aksenova
TI  - A Projection-Difference Scheme with Economical Operator for the Stokes Evolution Equation in the Cylinder with a Small Hole
JO  - Matematičeskie zametki
PY  - 2017
SP  - 140
EP  - 144
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a12/
LA  - ru
ID  - MZM_2017_101_1_a12
ER  - 
%0 Journal Article
%A E. I. Aksenova
%T A Projection-Difference Scheme with Economical Operator for the Stokes Evolution Equation in the Cylinder with a Small Hole
%J Matematičeskie zametki
%D 2017
%P 140-144
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a12/
%G ru
%F MZM_2017_101_1_a12
E. I. Aksenova. A Projection-Difference Scheme with Economical Operator for the Stokes Evolution Equation in the Cylinder with a Small Hole. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 140-144. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a12/

[1] R. Temam, Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[2] E. I. Aksenova, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 908–922 | MR | Zbl

[3] E. I. Aksenova, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 445–456 | MR | Zbl