A Projection-Difference Scheme with Economical Operator for the Stokes Evolution Equation in the Cylinder with a Small Hole
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 140-144
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
nonstationary Stokes boundary-value problem, cylindrical coordinates, domain with small hole, estimate of the rate of convergence.
@article{MZM_2017_101_1_a12,
author = {E. I. Aksenova},
title = {A {Projection-Difference} {Scheme} with {Economical} {Operator} for the {Stokes} {Evolution} {Equation} in the {Cylinder} with a {Small} {Hole}},
journal = {Matemati\v{c}eskie zametki},
pages = {140--144},
year = {2017},
volume = {101},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a12/}
}
TY - JOUR AU - E. I. Aksenova TI - A Projection-Difference Scheme with Economical Operator for the Stokes Evolution Equation in the Cylinder with a Small Hole JO - Matematičeskie zametki PY - 2017 SP - 140 EP - 144 VL - 101 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a12/ LA - ru ID - MZM_2017_101_1_a12 ER -
%0 Journal Article %A E. I. Aksenova %T A Projection-Difference Scheme with Economical Operator for the Stokes Evolution Equation in the Cylinder with a Small Hole %J Matematičeskie zametki %D 2017 %P 140-144 %V 101 %N 1 %U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a12/ %G ru %F MZM_2017_101_1_a12
E. I. Aksenova. A Projection-Difference Scheme with Economical Operator for the Stokes Evolution Equation in the Cylinder with a Small Hole. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 140-144. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a12/