Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 116-129
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of an infinite number of periodic solutions of a quasilinear wave equation with variable coefficients, with Dirichlet and Neumann boundary conditions on the closed interval and with time-periodic right-hand side is proved. The nonlinear summand has a power-law growth.
Keywords:
wave equation, periodic solutions, variational method, perturbation of even functionals.
@article{MZM_2017_101_1_a10,
author = {I. A. Rudakov},
title = {Periodic {Solutions} of the {Quasilinear} {Equation} of {Forced} {Vibrations} of an {Inhomogeneous} {String}},
journal = {Matemati\v{c}eskie zametki},
pages = {116--129},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/}
}
TY - JOUR AU - I. A. Rudakov TI - Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String JO - Matematičeskie zametki PY - 2017 SP - 116 EP - 129 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/ LA - ru ID - MZM_2017_101_1_a10 ER -
I. A. Rudakov. Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 116-129. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/