Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 116-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of an infinite number of periodic solutions of a quasilinear wave equation with variable coefficients, with Dirichlet and Neumann boundary conditions on the closed interval and with time-periodic right-hand side is proved. The nonlinear summand has a power-law growth.
Keywords: wave equation, periodic solutions, variational method, perturbation of even functionals.
@article{MZM_2017_101_1_a10,
     author = {I. A. Rudakov},
     title = {Periodic {Solutions} of the {Quasilinear} {Equation} of {Forced} {Vibrations} of an {Inhomogeneous} {String}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {116--129},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/}
}
TY  - JOUR
AU  - I. A. Rudakov
TI  - Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String
JO  - Matematičeskie zametki
PY  - 2017
SP  - 116
EP  - 129
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/
LA  - ru
ID  - MZM_2017_101_1_a10
ER  - 
%0 Journal Article
%A I. A. Rudakov
%T Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String
%J Matematičeskie zametki
%D 2017
%P 116-129
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/
%G ru
%F MZM_2017_101_1_a10
I. A. Rudakov. Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 116-129. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/

[1] H. Brezis, L. Nirenberg, “Forced vibration for a nonlinear wave equations”, Comm. Pure Appl. Math., 31:1 (1978), 1–30 | DOI | MR | Zbl

[2] P. Rabinowitz, “Free vibration for a semilinear wave equation”, Comm. Pure Appl. Math., 31:1 (1978), 31–68 | DOI | MR | Zbl

[3] H. Bahri, H. Brezis, “Periodic solutions of a nonlinear wave equation”, Proc. Roy. Soc. Edinburgh Sect. A, 85:3-4 (1980), 313–320 | DOI | MR | Zbl

[4] K. Tanaka, “Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm |u|^{p-1}u=f(x,t)$. II”, Trans. Amer. Math. Soc., 307:2 (1988), 615–645 | MR | Zbl

[5] E. Feireisl, “On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term”, Czechoslovak Math. J., 38:1 (1988), 78–87 | MR | Zbl

[6] P. I. Plotnikov, “Suschestvovanie schetnogo mnozhestva periodicheskikh reshenii zadachi o vynuzhdennykh kolebaniyakh dlya slabo nelineinogo volnovogo uravneniya”, Matem. sb., 136 (178):4 (8) (1988), 546–560 | MR | Zbl

[7] I. A. Rudakov, “Nelineinye kolebaniya struny”, Vestn. Mosk. un-ta., Ser. 1. Matem., mekh., 1984, no. 2, 9–13 | Zbl

[8] V. Barby, N. H. Pavel, “Periodic solutions to nonlinear one-dimensional wave equation with $x$-dependent coefficients”, Trans. Amer. Math. Soc., 349:5 (1997), 2035–2048 | DOI | MR | Zbl

[9] I. A. Rudakov, “Periodicheskie resheniya nelineinogo volnovogo uravneniya s nepostoyannymi koeffitsientami”, Matem. zametki, 76:3 (2004), 427–438 | DOI | MR | Zbl

[10] I. A. Rudakov, “Periodicheskie resheniya kvazilineinogo volnovogo uravneniya s peremennymi koeffitsientami”, Matem. sb., 198:7 (2007), 91–108 | DOI | MR | Zbl

[11] J. Shuguan, “Time periodic solutions to a nonlinear wave equation with $x$-dependet coefficients”, Calc. Var. Partial Differential Equations, 32:2 (2008), 137–153 | DOI | MR | Zbl

[12] V. A. Kondratev, I. A. Rudakov, “O periodicheskikh resheniyakh kvazilineinogo volnovogo uravneniya”, Matem. zametki, 85:1 (2009), 36–53 | DOI | MR | Zbl

[13] I. A. Rudakov, “Periodicheskie resheniya volnovogo uravneniya s nepostoyannymi koeffitsientami s odnorodnymi granichnymi usloviyami Dirikhle i Neimana”, Differents. uravneniya, 52:2 (2016), 247–256 | DOI | Zbl

[14] F. Trikomi, Differentsialnye uravneniya, URSS, M., 2003

[15] P. H. Rabinowitz, “Multiple critical points of perturbed symmetric functionals”, Trans. Amer. Math. Soc., 272:2 (1982), 753–769 | DOI | MR | Zbl

[16] A. Bahri, H. Berestycki, “Topological results on a certain class of functionals and applications”, Trans. Amer. Math. Soc., 267:1 (1981), 1–32 | DOI | MR | Zbl

[17] I. A. Rudakov, “Periodicheskie resheniya kvazilineinogo uravneniya vynuzhdennykh kolebanii balki s odnorodnymi granichnymi usloviyami”, Izv. RAN. Ser. matem., 79:5 (2015), 215–238 | DOI | MR

[18] J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach Sci. Publ., New York, 1969 | MR | Zbl

[19] V. A. Sadovnichii, Teoriya operatorov, Drofa, M., 2001