Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_1_a10, author = {I. A. Rudakov}, title = {Periodic {Solutions} of the {Quasilinear} {Equation} of {Forced} {Vibrations} of an {Inhomogeneous} {String}}, journal = {Matemati\v{c}eskie zametki}, pages = {116--129}, publisher = {mathdoc}, volume = {101}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/} }
TY - JOUR AU - I. A. Rudakov TI - Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String JO - Matematičeskie zametki PY - 2017 SP - 116 EP - 129 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/ LA - ru ID - MZM_2017_101_1_a10 ER -
I. A. Rudakov. Periodic Solutions of the Quasilinear Equation of Forced Vibrations of an Inhomogeneous String. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 116-129. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a10/
[1] H. Brezis, L. Nirenberg, “Forced vibration for a nonlinear wave equations”, Comm. Pure Appl. Math., 31:1 (1978), 1–30 | DOI | MR | Zbl
[2] P. Rabinowitz, “Free vibration for a semilinear wave equation”, Comm. Pure Appl. Math., 31:1 (1978), 31–68 | DOI | MR | Zbl
[3] H. Bahri, H. Brezis, “Periodic solutions of a nonlinear wave equation”, Proc. Roy. Soc. Edinburgh Sect. A, 85:3-4 (1980), 313–320 | DOI | MR | Zbl
[4] K. Tanaka, “Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm |u|^{p-1}u=f(x,t)$. II”, Trans. Amer. Math. Soc., 307:2 (1988), 615–645 | MR | Zbl
[5] E. Feireisl, “On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term”, Czechoslovak Math. J., 38:1 (1988), 78–87 | MR | Zbl
[6] P. I. Plotnikov, “Suschestvovanie schetnogo mnozhestva periodicheskikh reshenii zadachi o vynuzhdennykh kolebaniyakh dlya slabo nelineinogo volnovogo uravneniya”, Matem. sb., 136 (178):4 (8) (1988), 546–560 | MR | Zbl
[7] I. A. Rudakov, “Nelineinye kolebaniya struny”, Vestn. Mosk. un-ta., Ser. 1. Matem., mekh., 1984, no. 2, 9–13 | Zbl
[8] V. Barby, N. H. Pavel, “Periodic solutions to nonlinear one-dimensional wave equation with $x$-dependent coefficients”, Trans. Amer. Math. Soc., 349:5 (1997), 2035–2048 | DOI | MR | Zbl
[9] I. A. Rudakov, “Periodicheskie resheniya nelineinogo volnovogo uravneniya s nepostoyannymi koeffitsientami”, Matem. zametki, 76:3 (2004), 427–438 | DOI | MR | Zbl
[10] I. A. Rudakov, “Periodicheskie resheniya kvazilineinogo volnovogo uravneniya s peremennymi koeffitsientami”, Matem. sb., 198:7 (2007), 91–108 | DOI | MR | Zbl
[11] J. Shuguan, “Time periodic solutions to a nonlinear wave equation with $x$-dependet coefficients”, Calc. Var. Partial Differential Equations, 32:2 (2008), 137–153 | DOI | MR | Zbl
[12] V. A. Kondratev, I. A. Rudakov, “O periodicheskikh resheniyakh kvazilineinogo volnovogo uravneniya”, Matem. zametki, 85:1 (2009), 36–53 | DOI | MR | Zbl
[13] I. A. Rudakov, “Periodicheskie resheniya volnovogo uravneniya s nepostoyannymi koeffitsientami s odnorodnymi granichnymi usloviyami Dirikhle i Neimana”, Differents. uravneniya, 52:2 (2016), 247–256 | DOI | Zbl
[14] F. Trikomi, Differentsialnye uravneniya, URSS, M., 2003
[15] P. H. Rabinowitz, “Multiple critical points of perturbed symmetric functionals”, Trans. Amer. Math. Soc., 272:2 (1982), 753–769 | DOI | MR | Zbl
[16] A. Bahri, H. Berestycki, “Topological results on a certain class of functionals and applications”, Trans. Amer. Math. Soc., 267:1 (1981), 1–32 | DOI | MR | Zbl
[17] I. A. Rudakov, “Periodicheskie resheniya kvazilineinogo uravneniya vynuzhdennykh kolebanii balki s odnorodnymi granichnymi usloviyami”, Izv. RAN. Ser. matem., 79:5 (2015), 215–238 | DOI | MR
[18] J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach Sci. Publ., New York, 1969 | MR | Zbl
[19] V. A. Sadovnichii, Teoriya operatorov, Drofa, M., 2001