Irreducible Characters of Hadamard Algebras
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 897-903.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of Hadamard decomposition of a semisimple associative finite-dimensional complex algebra generalizes the notion of classical Hadamard matrix, which corresponds to the case of commutative algebras. The algebras admitting Hadamard decompositions are called Hadamard algebras. A relation for the values of an irreducible character of a Hadamard algebra on the products of involutions forming an orthogonal basis of the algebra is obtained. This relation is then applied to describe the Hadamard decompositions in an algebra of dimension 8.
Mots-clés : Hadamard algebra, Hadamard decomposition, Hadamard matrix
Keywords: irreducible character.
@article{MZM_2016_99_6_a8,
     author = {D. N. Ivanov},
     title = {Irreducible {Characters} of {Hadamard} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {897--903},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a8/}
}
TY  - JOUR
AU  - D. N. Ivanov
TI  - Irreducible Characters of Hadamard Algebras
JO  - Matematičeskie zametki
PY  - 2016
SP  - 897
EP  - 903
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a8/
LA  - ru
ID  - MZM_2016_99_6_a8
ER  - 
%0 Journal Article
%A D. N. Ivanov
%T Irreducible Characters of Hadamard Algebras
%J Matematičeskie zametki
%D 2016
%P 897-903
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a8/
%G ru
%F MZM_2016_99_6_a8
D. N. Ivanov. Irreducible Characters of Hadamard Algebras. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 897-903. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a8/

[1] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl

[2] D. N. Ivanov, “Ortogonalnye razlozheniya assotsiativnykh algebr i sbalansirovannye sistemy idempotentov”, Matem. sb., 189:12 (1998), 83–102 | DOI | MR | Zbl

[3] D. N. Ivanov, “Odnorodnye ortogonalnye razlozheniya kommutativnykh algebr i matritsy Adamara”, Fundament. i prikl. matem., 1:4 (1995), 1107–1110 | MR | Zbl

[4] D. N. Ivanov, “Razmernost adamarovoi algebry delitsya na 4”, UMN, 60:2 (362) (2005), 163–164 | DOI | MR | Zbl

[5] D. N. Ivanov, “Adamarovy algebry s edinstvennoi nekommutativnoi prostoi komponentoi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2011, no. 5, 46–48 | Zbl

[6] D. N. Ivanov, “Adamarovy algebry”, Matem. zametki, 96:2 (2014), 207–211 | DOI | Zbl

[7] D. N. Ivanov, “Adamarovy razlozheniya poluprostykh assotsiativnykh algebr”, UMN, 58:4 (352) (2003), 147–148 | DOI | MR | Zbl

[8] D. N. Ivanov, “Stepeni neprivodimykh kharakterov i razmernosti adamarovykh algebr”, Matem. zametki, 98:2 (2015), 230–236 | DOI | MR | Zbl

[9] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “Ortogonalnye razlozheniya prostykh algebr Li (tip $A_n$)”, Analiticheskaya teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 158, 1981, 105–120 | MR | Zbl