On the Divergence of Fourier Series in the Spaces~$\varphi(L)$ Containing~$L$
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 878-886
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the question of the divergence of Fourier series in function spaces wider than $L=L[-\pi,\pi]$, but narrower than $L^p=L^p[-\pi,\pi]$ for all $p\in(0,1)$. It is proved that the recent results of Filippov on the generalization to the space $\varphi(L)$ of Kolmogorov's theorem on the convergence of Fourier series in $L^p$, $p\in(0,1)$, cannot be improved.
Keywords:
Fourier series, the space $\varphi(L)$, the spaces $L^p$, $p\in(0,1)$, integrable function.
Mots-clés : convergence of Fourier series
Mots-clés : convergence of Fourier series
@article{MZM_2016_99_6_a6,
author = {M. R. Gabdullin},
title = {On the {Divergence} of {Fourier} {Series} in the {Spaces~}$\varphi(L)$ {Containing~}$L$},
journal = {Matemati\v{c}eskie zametki},
pages = {878--886},
publisher = {mathdoc},
volume = {99},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a6/}
}
M. R. Gabdullin. On the Divergence of Fourier Series in the Spaces~$\varphi(L)$ Containing~$L$. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 878-886. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a6/