Decomposition of Spaces of Modular Forms
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 867-877
Voir la notice de l'article provenant de la source Math-Net.Ru
Structural theorems for spaces of modular forms with respect to congruence subgroups are proved. The Dedekind $\eta$-function plays an important role in our study.
Keywords:
space of cusp forms, modular form, Dedekind $\eta$-function, $\eta$-product, Dirichlet character, Cohen–Osterle formula, Eisenstein series
Mots-clés : Jacobi symbol, parabolic vertex.
Mots-clés : Jacobi symbol, parabolic vertex.
@article{MZM_2016_99_6_a5,
author = {G. V. Voskresenskaya},
title = {Decomposition of {Spaces} of {Modular} {Forms}},
journal = {Matemati\v{c}eskie zametki},
pages = {867--877},
publisher = {mathdoc},
volume = {99},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a5/}
}
G. V. Voskresenskaya. Decomposition of Spaces of Modular Forms. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 867-877. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a5/