On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 855-866
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, a $2m$th-order quasilinear divergence equation is considered under the condition that its coefficients satisfy the Carathéodory condition and the standard conditions of growth and coercivity in the Sobolev space $W^{m,p}(\Omega)$, $\Omega\subset \mathbb{R}^{n}$, $p>1$. It is proved that an arbitrary generalized (in the sense of distributions) solution $u\in W^{m,p}_{0}(\Omega)$ of this equation is bounded if $m\ge2$, $n=mp$, and the right-hand side of this equation belongs to the Orlicz–Zygmund space $L(\log L)^{n-1}(\Omega)$.
Keywords:
quasilinear divergence equation, generalized solution, Sobolev space, Orlicz–Zygmund space.
@article{MZM_2016_99_6_a4,
author = {M. V. Voitovich},
title = {On the {Boundedness} of {Generalized} {Solutions} of {Higher-Order} {Nonlinear} {Elliptic} {Equations} with {Data} from an {Orlicz--Zygmund} {Class}},
journal = {Matemati\v{c}eskie zametki},
pages = {855--866},
publisher = {mathdoc},
volume = {99},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a4/}
}
TY - JOUR AU - M. V. Voitovich TI - On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class JO - Matematičeskie zametki PY - 2016 SP - 855 EP - 866 VL - 99 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a4/ LA - ru ID - MZM_2016_99_6_a4 ER -
%0 Journal Article %A M. V. Voitovich %T On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class %J Matematičeskie zametki %D 2016 %P 855-866 %V 99 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a4/ %G ru %F MZM_2016_99_6_a4
M. V. Voitovich. On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 855-866. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a4/