On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 855-866.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, a $2m$th-order quasilinear divergence equation is considered under the condition that its coefficients satisfy the Carathéodory condition and the standard conditions of growth and coercivity in the Sobolev space $W^{m,p}(\Omega)$, $\Omega\subset \mathbb{R}^{n}$, $p>1$. It is proved that an arbitrary generalized (in the sense of distributions) solution $u\in W^{m,p}_{0}(\Omega)$ of this equation is bounded if $m\ge2$, $n=mp$, and the right-hand side of this equation belongs to the Orlicz–Zygmund space $L(\log L)^{n-1}(\Omega)$.
Keywords: quasilinear divergence equation, generalized solution, Sobolev space, Orlicz–Zygmund space.
@article{MZM_2016_99_6_a4,
     author = {M. V. Voitovich},
     title = {On the {Boundedness} of {Generalized} {Solutions} of {Higher-Order} {Nonlinear} {Elliptic} {Equations} with {Data} from an {Orlicz--Zygmund} {Class}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {855--866},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a4/}
}
TY  - JOUR
AU  - M. V. Voitovich
TI  - On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class
JO  - Matematičeskie zametki
PY  - 2016
SP  - 855
EP  - 866
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a4/
LA  - ru
ID  - MZM_2016_99_6_a4
ER  - 
%0 Journal Article
%A M. V. Voitovich
%T On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class
%J Matematičeskie zametki
%D 2016
%P 855-866
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a4/
%G ru
%F MZM_2016_99_6_a4
M. V. Voitovich. On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 855-866. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a4/

[1] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[2] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[3] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[4] A. Alberico, V. Ferone, “Regularity properties of solutions of elliptic equations in $\mathbb{R}^{2}$ in limit cases”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 6:4 (1995), 237–250 | MR | Zbl

[5] V. Ferone, N. Fusco, “Continuity properties of minimizers of integral functionals in a limit case”, J. Math. Anal. Appl., 202:1 (1996), 27–52 | DOI | MR | Zbl

[6] I. V. Skrypnik, Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973 | MR | Zbl

[7] I. V. Skrypnik, “O kvazilineinykh ellipticheskikh uravneniyakh vysshego poryadka s nepreryvnymi obobschennymi resheniyami”, Differents. uravneniya, 14:6 (1978), 1104–1118 | MR | Zbl

[8] A. A. Kovalevskii, M. V. Voitovich, “O povyshenii summiruemosti obobschennykh reshenii zadachi Dirikhle dlya nelineinykh uravnenii chetvertogo poryadka s usilennoi elliptichnostyu”, Ukr. matem. zhurnal, 58:11 (2006), 1511–1524 | MR | Zbl

[9] M. V. Voitovich, “O svoistvakh integriruemosti obobschennykh reshenii zadachi Dirikhle dlya nelineinykh uravnenii vysokogo poryadka s usilennoi elliptichnostyu”, Tr. IPMM NAN Ukrainy, 15 (2007), 3–14

[10] M. V. Voitovich, “Existence of bounded solutions for a class of nonlinear fourth-order equations”, Differ. Equ. Appl., 3:2 (2011), 247–266 | MR | Zbl

[11] J. Frehse, “On the boundedness of weak solutions of higher order nonlinear elliptic partial differential equations”, Boll. Un. Mat. Ital. (4), 3 (1970), 607–627 | MR | Zbl

[12] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, Fizmatgiz, M., 1958 | MR | Zbl