Mots-clés : bifurcation complex.
@article{MZM_2016_99_6_a3,
author = {A. V. Borisov and P. E. Ryabov and S. V. Sokolov},
title = {Bifurcation {Analysis} of the {Motion} of a {Cylinder} and a {Point} {Vortex} in an {Ideal} {Fluid}},
journal = {Matemati\v{c}eskie zametki},
pages = {848--854},
year = {2016},
volume = {99},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/}
}
TY - JOUR AU - A. V. Borisov AU - P. E. Ryabov AU - S. V. Sokolov TI - Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid JO - Matematičeskie zametki PY - 2016 SP - 848 EP - 854 VL - 99 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/ LA - ru ID - MZM_2016_99_6_a3 ER -
A. V. Borisov; P. E. Ryabov; S. V. Sokolov. Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 848-854. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/
[1] A. V. Borisov, I. S. Mamaev, “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regul. Chaotic Dyn., 8:2 (2003), 163–166 | DOI | MR | Zbl
[2] A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Dynamics of a circular cylinder interacting with point vortices”, Discrete Contin. Dyn. Syst. Ser. B, 5:1 (2005), 35–50 | MR | Zbl
[3] A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Dynamic interaction of point vortices and a two-dimensional cylinder”, J. Math. Phys., 48:6 (2007), 065403 | DOI | MR
[4] S. V. Sokolov, S. M. Ramodanov, “Falling motion of a circular cylinder interacting dynamically with a point vortex”, Regul. Chaotic Dyn., 18:1-2 (2013), 184–193 | DOI | MR | Zbl
[5] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR
[6] A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Coupled motion of a rigid body and point vortices on a two-dimensional spherical surface”, Regul. Chaotic Dyn., 15:4-5 (2010), 440–461 | DOI | MR | Zbl
[7] I. A. Bizyaev, V. V. Kozlov, “Odnorodnye sistemy s kvadratichnymi integralami, kvaziskobki Li–Puassona i metod Kovalevskoi”, Matem. sb., 206:12 (2015), 29–54 | DOI | MR
[8] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Lie algebras in vortex dynamics and celestial mechanics – IV”, Regul. Chaotic Dyn., 4:1 (1999), 23–50 | DOI | MR | Zbl
[9] N. N. Nekhoroshev, “Peremennye deistvie-ugol i ikh obobscheniya”, Tr. MMO, 26, Izd-vo Mosk. un-ta, M., 1972, 181–198 | MR | Zbl
[10] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (392) (2010), 71–132 | DOI | MR | Zbl
[11] A. V. Borisov, I. S. Mamaev, “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371 | DOI | MR | Zbl
[12] H. Waalkens, H. R. Dullin, H. Richter, “The problem of two fixed centers: bifurcations, actions, monodromy”, Phys. D, 196:3-4 (2004), 265–310 | DOI | MR | Zbl
[13] P. E. Ryabov, “Bifurcation sets in an integrable problem on motion of a rigid body in fluid”, Regul. Chaotic Dyn., 4:4 (1999), 59–76 | DOI | MR | Zbl
[14] L. Gavrilov, “Bifurcations of invariant manifolds in the generalized Henon–Heiles system”, Phys. D, 34:1-2 (1989), 223–239 | DOI | MR | Zbl
[15] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Bifurcation analysis and the Conley index in mechanics”, Regul. Chaotic Dyn., 17:5 (2012), 451–478 | DOI | MR | Zbl