Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 848-854

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an integrable Hamiltonian system describing the motion of a circular cylinder and a vortex filament in an ideal fluid. We construct bifurcation diagrams and bifurcation complexes for the case in which the integral manifold is compact and for various topological structures of the symplectic leaf. The types of motions corresponding to the bifurcation curves and their stability are discussed.
Keywords: Hamiltonian system, integrability
Mots-clés : bifurcation complex.
@article{MZM_2016_99_6_a3,
     author = {A. V. Borisov and P. E. Ryabov and S. V. Sokolov},
     title = {Bifurcation {Analysis} of the {Motion} of a {Cylinder} and a {Point} {Vortex} in an {Ideal} {Fluid}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {848--854},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - P. E. Ryabov
AU  - S. V. Sokolov
TI  - Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid
JO  - Matematičeskie zametki
PY  - 2016
SP  - 848
EP  - 854
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/
LA  - ru
ID  - MZM_2016_99_6_a3
ER  - 
%0 Journal Article
%A A. V. Borisov
%A P. E. Ryabov
%A S. V. Sokolov
%T Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid
%J Matematičeskie zametki
%D 2016
%P 848-854
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/
%G ru
%F MZM_2016_99_6_a3
A. V. Borisov; P. E. Ryabov; S. V. Sokolov. Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 848-854. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/