Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 848-854
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an integrable Hamiltonian system describing the motion of a circular cylinder and a vortex filament in an ideal fluid. We construct bifurcation diagrams and bifurcation complexes for the case in which the integral manifold is compact and for various topological structures of the symplectic leaf. The types of motions corresponding to the bifurcation curves and their stability are discussed.
Keywords:
Hamiltonian system, integrability
Mots-clés : bifurcation complex.
Mots-clés : bifurcation complex.
@article{MZM_2016_99_6_a3,
author = {A. V. Borisov and P. E. Ryabov and S. V. Sokolov},
title = {Bifurcation {Analysis} of the {Motion} of a {Cylinder} and a {Point} {Vortex} in an {Ideal} {Fluid}},
journal = {Matemati\v{c}eskie zametki},
pages = {848--854},
publisher = {mathdoc},
volume = {99},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/}
}
TY - JOUR AU - A. V. Borisov AU - P. E. Ryabov AU - S. V. Sokolov TI - Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid JO - Matematičeskie zametki PY - 2016 SP - 848 EP - 854 VL - 99 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/ LA - ru ID - MZM_2016_99_6_a3 ER -
%0 Journal Article %A A. V. Borisov %A P. E. Ryabov %A S. V. Sokolov %T Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid %J Matematičeskie zametki %D 2016 %P 848-854 %V 99 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/ %G ru %F MZM_2016_99_6_a3
A. V. Borisov; P. E. Ryabov; S. V. Sokolov. Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 848-854. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/