Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 848-854.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an integrable Hamiltonian system describing the motion of a circular cylinder and a vortex filament in an ideal fluid. We construct bifurcation diagrams and bifurcation complexes for the case in which the integral manifold is compact and for various topological structures of the symplectic leaf. The types of motions corresponding to the bifurcation curves and their stability are discussed.
Keywords: Hamiltonian system, integrability
Mots-clés : bifurcation complex.
@article{MZM_2016_99_6_a3,
     author = {A. V. Borisov and P. E. Ryabov and S. V. Sokolov},
     title = {Bifurcation {Analysis} of the {Motion} of a {Cylinder} and a {Point} {Vortex} in an {Ideal} {Fluid}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {848--854},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - P. E. Ryabov
AU  - S. V. Sokolov
TI  - Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid
JO  - Matematičeskie zametki
PY  - 2016
SP  - 848
EP  - 854
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/
LA  - ru
ID  - MZM_2016_99_6_a3
ER  - 
%0 Journal Article
%A A. V. Borisov
%A P. E. Ryabov
%A S. V. Sokolov
%T Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid
%J Matematičeskie zametki
%D 2016
%P 848-854
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/
%G ru
%F MZM_2016_99_6_a3
A. V. Borisov; P. E. Ryabov; S. V. Sokolov. Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 848-854. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a3/

[1] A. V. Borisov, I. S. Mamaev, “An integrability of the problem on motion of cylinder and vortex in the ideal fluid”, Regul. Chaotic Dyn., 8:2 (2003), 163–166 | DOI | MR | Zbl

[2] A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Dynamics of a circular cylinder interacting with point vortices”, Discrete Contin. Dyn. Syst. Ser. B, 5:1 (2005), 35–50 | MR | Zbl

[3] A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Dynamic interaction of point vortices and a two-dimensional cylinder”, J. Math. Phys., 48:6 (2007), 065403 | DOI | MR

[4] S. V. Sokolov, S. M. Ramodanov, “Falling motion of a circular cylinder interacting dynamically with a point vortex”, Regul. Chaotic Dyn., 18:1-2 (2013), 184–193 | DOI | MR | Zbl

[5] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[6] A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Coupled motion of a rigid body and point vortices on a two-dimensional spherical surface”, Regul. Chaotic Dyn., 15:4-5 (2010), 440–461 | DOI | MR | Zbl

[7] I. A. Bizyaev, V. V. Kozlov, “Odnorodnye sistemy s kvadratichnymi integralami, kvaziskobki Li–Puassona i metod Kovalevskoi”, Matem. sb., 206:12 (2015), 29–54 | DOI | MR

[8] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Lie algebras in vortex dynamics and celestial mechanics – IV”, Regul. Chaotic Dyn., 4:1 (1999), 23–50 | DOI | MR | Zbl

[9] N. N. Nekhoroshev, “Peremennye deistvie-ugol i ikh obobscheniya”, Tr. MMO, 26, Izd-vo Mosk. un-ta, M., 1972, 181–198 | MR | Zbl

[10] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2 (392) (2010), 71–132 | DOI | MR | Zbl

[11] A. V. Borisov, I. S. Mamaev, “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371 | DOI | MR | Zbl

[12] H. Waalkens, H. R. Dullin, H. Richter, “The problem of two fixed centers: bifurcations, actions, monodromy”, Phys. D, 196:3-4 (2004), 265–310 | DOI | MR | Zbl

[13] P. E. Ryabov, “Bifurcation sets in an integrable problem on motion of a rigid body in fluid”, Regul. Chaotic Dyn., 4:4 (1999), 59–76 | DOI | MR | Zbl

[14] L. Gavrilov, “Bifurcations of invariant manifolds in the generalized Henon–Heiles system”, Phys. D, 34:1-2 (1989), 223–239 | DOI | MR | Zbl

[15] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Bifurcation analysis and the Conley index in mechanics”, Regul. Chaotic Dyn., 17:5 (2012), 451–478 | DOI | MR | Zbl