Nonperiodic Modulus of Smoothness Corresponding to the Riesz Derivative
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 933-936.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: modulus of smoothness, Riesz derivative, Fejér means, $K$-functional.
Mots-clés : Fejér kernel
@article{MZM_2016_99_6_a12,
     author = {S. Yu. Artamonov},
     title = {Nonperiodic {Modulus} of {Smoothness} {Corresponding} to the {Riesz} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {933--936},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a12/}
}
TY  - JOUR
AU  - S. Yu. Artamonov
TI  - Nonperiodic Modulus of Smoothness Corresponding to the Riesz Derivative
JO  - Matematičeskie zametki
PY  - 2016
SP  - 933
EP  - 936
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a12/
LA  - ru
ID  - MZM_2016_99_6_a12
ER  - 
%0 Journal Article
%A S. Yu. Artamonov
%T Nonperiodic Modulus of Smoothness Corresponding to the Riesz Derivative
%J Matematičeskie zametki
%D 2016
%P 933-936
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a12/
%G ru
%F MZM_2016_99_6_a12
S. Yu. Artamonov. Nonperiodic Modulus of Smoothness Corresponding to the Riesz Derivative. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 933-936. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a12/

[1] K. Runovski, H.-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint. Jenaer Schriften für Math. und Inf. Math/Inf/01/11, 2011

[2] S. Yu. Artamonov, Uch. zap. TNU im. V. I. Vernadskogo. Ser. Matem. Mekh. Inform. i kibernet., 24 (63):3 (2011), 10–22

[3] Z. Burinska, K. Runovski, H.-J. Schmeisser, Sampl. Theory Signal Image Process., 5:1 (2006), 59–87 | MR | Zbl

[4] L. Hörmander, The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | Zbl

[5] Z. Burinska, K. Runovski, H.-J. Schmeisser, Sampl. Theory Signal Image Process., 8:2 (2009), 105–126 | MR | Zbl

[6] P. L. Butzer, W. Splettstösser, R. Stens, Jahresber. Deutsch. Math.-Verein., 90:1 (1988), 1–70 | MR | Zbl

[7] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[8] H.-J. Schmeisser, W. Sickel, Applied Mathematics Reviews, Vol. 1, World Sci., Singapore, 2000, 205–284 | MR | Zbl

[9] K. Runovski, H.-J. Schmeisser, Eurasian Math. J., 2:3 (2011), 98–124 | MR | Zbl

[10] R. DeVore, G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[11] H. Triebel, Theory of Function Spaces, Mathematik und ihre Anwendungen in Physik und Technik, 38, Akad. Verlag. Geest Portig K.-G., Leipzig, 1983 | MR | Zbl

[12] D. Jackson, Über die Genauigkeit der Annaheruny stetiger Funktionen durch ganze rationale Funktionen gegebenen Frades und trigonometrischen Summen gegebener Ordnung, Diss., Göttingen, 1911

[13] S. B. Stechkin, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[14] K. V. Runovskii, Matem. zametki, 95:6 (2014), 899–910 | DOI | MR