Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 929-932.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: von Neumann algebra, noncommutative operator graph, superactivation phenomenon, quantum channel, quantum state, Kraus operator.
@article{MZM_2016_99_6_a11,
     author = {G. G. Amosov and I. Yu. Zhdanovskii},
     title = {Structure of the {Algebra} {Generated} by a {Noncommutative} {Operator} {Graph} which {Demonstrates} the {Superactivation} {Phenomenon} for {Zero-Error} {Capacity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {929--932},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a11/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - I. Yu. Zhdanovskii
TI  - Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity
JO  - Matematičeskie zametki
PY  - 2016
SP  - 929
EP  - 932
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a11/
LA  - ru
ID  - MZM_2016_99_6_a11
ER  - 
%0 Journal Article
%A G. G. Amosov
%A I. Yu. Zhdanovskii
%T Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity
%J Matematičeskie zametki
%D 2016
%P 929-932
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a11/
%G ru
%F MZM_2016_99_6_a11
G. G. Amosov; I. Yu. Zhdanovskii. Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 929-932. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a11/

[1] M. E. Shirokov, Quantum Inf. Process., 14:8 (2015), 3057–3074 | DOI | MR | Zbl

[2] G. Smith, J. Yard, Science, 321:5897 (2008), 1812–1815 ; arXiv: 0807.4935 | DOI | MR | Zbl

[3] R. Duan, Super-Activation of Zero-Error Capacity of Noisy Quantum Channels, 2009, arXiv: 0906.2527

[4] T. S. Cubitt, J. Chen, A. W. Harrow, Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel, 2009, arXiv: 0906.2547

[5] R. Duan, S. Severini, A. Winter, IEEE Trans. Inform. Theory, 59:2 (2013), 1164–1174 ; arXiv: 1002.2514 | DOI | MR

[6] M. E. Shirokov, T. Shulman, Comm. Math. Phys., 335:3 (2015), 1159–1179 ; arXiv: 1309.2610 | DOI | MR | Zbl

[7] M. E. Shirokov, T. V. Shulman, Probl. peredachi inform., 50:3 (2014), 35–50 ; arXiv: 1312.3586 | MR | Zbl

[8] A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction, De Gruyter Stud. in Math. Phys., 16, De Gruyter, Berlin, 2012 | MR | Zbl

[9] A. S. Kholevo, TVP, 51:1 (2006), 133–143 ; arXiv: quant-ph/0509101 | DOI | MR | Zbl

[10] T. S. Cubitt, M. B. Ruskai, G. Smith, J. Math. Phys., 49:10 (2008), 102104 ; arXiv: 0802.1360 | DOI | MR | Zbl