First Boundary-Value Problem in the Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann--Liouville Derivative
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 921-928.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first boundary-value problem in the half-strip for a parabolic-type equation with Bessel operator and Riemann–Liouville derivative is studied. In the case of the zero initial condition, the representation of the solution in terms of the Fox $H$-function is obtained. The uniqueness of the solution for a class of functions vanishing at infinity is proved. It is shown that when the equation under consideration coincides with the Fourier equation, the obtained representation of the solution becomes the known representation of the solution of the corresponding problem.
Mots-clés : parabolic-type equation, Fourier equation, diffusion of fractional order.
Keywords: first boundary-value problem, Fox $H$-function, Riemann–Liouville derivative, Bessel operator
@article{MZM_2016_99_6_a10,
     author = {F. G. Khushtova},
     title = {First {Boundary-Value} {Problem} in the {Half-Strip} for a {Parabolic-Type} {Equation} with {Bessel} {Operator} and {Riemann--Liouville} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {921--928},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a10/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - First Boundary-Value Problem in the Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann--Liouville Derivative
JO  - Matematičeskie zametki
PY  - 2016
SP  - 921
EP  - 928
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a10/
LA  - ru
ID  - MZM_2016_99_6_a10
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T First Boundary-Value Problem in the Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann--Liouville Derivative
%J Matematičeskie zametki
%D 2016
%P 921-928
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a10/
%G ru
%F MZM_2016_99_6_a10
F. G. Khushtova. First Boundary-Value Problem in the Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann--Liouville Derivative. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 921-928. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a10/

[1] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[2] S. A. Tersenov, Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Sibirsk. otdel., M., 1985 | MR | Zbl

[3] C. D. Pagani, “On the parabolic equation $\operatorname{sgn}(x)|x|^pu_y-u_{xx}=0$ and a related one”, Ann. Mat. Pura Appl. (4), 99:1 (1974), 333–399 | DOI | MR | Zbl

[4] S. Kȩpiński, “Integration der Differentialgleichung $\frac{\partial^2 j}{\partial\xi^2}-\frac{1}{\xi}\frac{\partial j}{\partial t}=0$”, Krakau Anz., 1905, 198–205 | Zbl

[5] O. Arena, “On a degenerate elliptic-parabolic equation”, Comm. Partial Differential Equations, 3:11 (1978), 1007–1040 | DOI | MR | Zbl

[6] F. Mainardi, “The time fractional diffusion-wave equation”, Radiophys. and Quantum Electronics, 38:1-2 (1995), 13–24 | DOI | MR

[7] A. A. Voroshilov, A. A. Kilbas, “Zadacha tipa Koshi dlya diffuzionno-volnovogo uravneniya s chastnoi proizvodnoi Rimana–Liuvillya”, Dokl. RAN, 406:1 (2006), 12–16 | MR | Zbl

[8] S. Kh. Gekkieva, “Zadacha Koshi dlya obobschennogo uravneniya perenosa s drobnoi po vremeni proizvodnoi”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. Akad. nauk, 5:1 (2000), 16–19

[9] A. N. Kochubei, “Zadacha Koshi dlya evolyutsionnykh uravnenii drobnogo poryadka”, Differentsialnye uravneniya, 25:8 (1989), 1359–1368 | Zbl

[10] A. N. Kochubei, “Diffuziya drobnogo poryadka”, Differentsialnye uravneniya, 26:4 (1990), 660–670 | MR | Zbl

[11] M. Giona, H. E. Roman, “Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior”, J. Phys. A: Math. Gen., 25 (1992), 2093–2105 | DOI | MR | Zbl

[12] R. Metzler, W. G. Glöckle, T. F. Nonnenmacher, “Fractional model equation for anomalous diffusion”, Phys. A: Stat. Mech. Appl., 211:1 (1994), 13–24 | DOI

[13] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl

[14] R. Metzler, J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Phys. A: Math. Gen., 37:31 (2004), R161–R208 | DOI | MR | Zbl

[15] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. V 3 t. T. 3. Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003 | MR | Zbl

[16] A. A. Kilbas, M. Saigo, $H$-Transform. Theory and Applications, Anal. Methods and Spec. Functions, 9, Chapman and Hall/CRC, Boca Raton, 2004 | MR

[17] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[18] A. V. Pskhu, “Kraevaya zadacha dlya uravneniya v chastnykh proizvodnykh drobnogo poryadka v oblasti s krivolineinoi granitsei”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. Akad. nauk, 16:2 (2014), 58–63