Construction of Optimal Ideal Spaces for Cones of Nonnegative Functions
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 820-831.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing an optimal ideal space for a given cone is considered. To solve this problem, the method of nonconstructing operators is applied.
Keywords: optimal ideal space, cone of nonnegative functions, generalized Banach function space, nonconstructing operator.
@article{MZM_2016_99_6_a1,
     author = {E. G. Bakhtigareeva},
     title = {Construction of {Optimal} {Ideal} {Spaces} for {Cones} of {Nonnegative} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {820--831},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a1/}
}
TY  - JOUR
AU  - E. G. Bakhtigareeva
TI  - Construction of Optimal Ideal Spaces for Cones of Nonnegative Functions
JO  - Matematičeskie zametki
PY  - 2016
SP  - 820
EP  - 831
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a1/
LA  - ru
ID  - MZM_2016_99_6_a1
ER  - 
%0 Journal Article
%A E. G. Bakhtigareeva
%T Construction of Optimal Ideal Spaces for Cones of Nonnegative Functions
%J Matematičeskie zametki
%D 2016
%P 820-831
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a1/
%G ru
%F MZM_2016_99_6_a1
E. G. Bakhtigareeva. Construction of Optimal Ideal Spaces for Cones of Nonnegative Functions. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 820-831. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a1/

[1] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math., 129, Academic Press, New York, 1988 | MR | Zbl

[2] E. G. Bakhtigareeva, M. L. Goldman, P. P. Zabreiko, “Optimalnoe vosstanovlenie obobschennogo banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Vestn. Tambovsk. gos. un-ta, 19:2 (2014), 316–330

[3] V. I. Burenkov, M. L. Goldman, “Vychislenie normy polozhitelnogo operatora na konuse monotonnykh funktsii”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 210, Nauka, M., 1995, 65–89 | MR | Zbl

[4] E. G. Bakhtigareeva, M. L. Goldman, “Optimalnoe idealnoe prostranstvo, soderzhaschee zadannyi konus, soglasovannyi s otnosheniem poryadka”, Tezisy dokladov mezhdunarodnoi konferentsii “Sovremennye metody i problemy teorii operatorov i garmonicheskogo analiza i ikh prilozheniya – V”, Rostov-na-Donu, 2015, 20–21

[5] E. G. Bakhtigareeva, M. L. Goldman, “Minimalnoe idealnoe prostranstvo, soderzhaschee konus neotritsatelnykh izmerimykh funktsii”, Tezisy dokladov mezhdunarodnoi konferentsii “Funktsionalnye prostranstva i teoriya priblizheniya funktsii”, M., 2015, 90

[6] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[7] M. L. Goldman, P. P. Zabreiko, “Optimalnoe vosstanovlenie banakhova funktsionalnogo prostranstva po konusu neotritsatelnykh funktsii”, Funktsionalnye prostranstva i smezhnye voprosy analiza, Tr. MIAN, 284, MAIK, M., 2014, 142–156 | DOI | Zbl

[8] L. Diening, S. Samko, “Hardy inequality in variable exponent Lebesgue spaces”, Fract. Calc. Appl. Anal., 10:1 (2007), 1–18 | MR | Zbl