Asymptotic Solutions of a Magnetohydrodynamic System which Describe Smoothed Discontinuities
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 803-819.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic solutions of a nonlinear magnetohydrodynamic system rapidly varying near moving surfaces are described. It is shown that the motion of jump surfaces is determined from a free boundary problem, while the main part of the asymptotics satisfies a system of equations on the moving surface. In the “nondegenerate” case, this system turns out to be linear, while, under the additional condition that the normal component of the magnetic field vanishes, it becomes nonlinear. In the latter case, the small magnetic field instantaneously increases to a value of order $1$.
Keywords: magnetohydrodynamic system, Cauchy problem, free boundary problem, magnetic field, rapidly varying solution, Alfven mode, smoothed discontinuity, Witham equation.
Mots-clés : incompressible fluid
@article{MZM_2016_99_6_a0,
     author = {A. I. Alillueva and A. I. Shafarevich},
     title = {Asymptotic {Solutions} of a {Magnetohydrodynamic} {System} which {Describe} {Smoothed} {Discontinuities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--819},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a0/}
}
TY  - JOUR
AU  - A. I. Alillueva
AU  - A. I. Shafarevich
TI  - Asymptotic Solutions of a Magnetohydrodynamic System which Describe Smoothed Discontinuities
JO  - Matematičeskie zametki
PY  - 2016
SP  - 803
EP  - 819
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a0/
LA  - ru
ID  - MZM_2016_99_6_a0
ER  - 
%0 Journal Article
%A A. I. Alillueva
%A A. I. Shafarevich
%T Asymptotic Solutions of a Magnetohydrodynamic System which Describe Smoothed Discontinuities
%J Matematičeskie zametki
%D 2016
%P 803-819
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a0/
%G ru
%F MZM_2016_99_6_a0
A. I. Alillueva; A. I. Shafarevich. Asymptotic Solutions of a Magnetohydrodynamic System which Describe Smoothed Discontinuities. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 803-819. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a0/

[1] V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci., 125, Springer-Verlag, New York, 1998 | MR | Zbl

[2] V. I. Arnold, “Neskolko zamechanii ob antidinamo-teoreme”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 5, 50–57 | MR | Zbl

[3] V. I. Arnold, E. I. Korkina, “Rost magnitnogo polya v trekhmernom statsionarnom potoke neszhimaemoi zhidkosti”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 3, 43–46 | Zbl

[4] V. I. Arnold, Ya. B. Zeldovich, A. A. Ruzmaikin, D. D. Sokolov, “Magnitnoe pole v statsionarnom techenii s rastyazheniyami v rimanovom prostranstve”, ZhETF, 11:6 (1981), 2052–2058

[5] S. Childress, “Fast dynamo theory”, Topological Aspects of the Dynamics of Fluids and Plasmas, NATO Adv. Sci. Inst. Ser. E Appl. Sci., 218, Kluwer Acad. Publ., Dordrecht, 1992, 111–147 | MR | Zbl

[6] S. Yu. Dobrokhotov, V. M. Olive, A. A. Ruzmaikin, A. I. Shafarevich, “Magnetic field asymptotics in a well conducting fluid”, Geophys. Astrophys. Fluid Dynam., 82:3-4 (1996), 255–280 | DOI | MR | Zbl

[7] Yu. B. Zeldovich, A. A. Ruzmaikin, D. Sokolov, Magnetic Fields in Astrophysics, Gordon Breach, New York, 1983

[8] H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluid, Cambridge Univ. Press, Cambridge, 1978

[9] M. M. Vishik, “Magnetic field generation by the motion of a highly conducting fluid”, Geophys. Astrophys. Fluid Dynam., 48:1-3 (1989), 151–167 | DOI | MR | Zbl

[10] A. I. Shafarevich, “Povedenie magnitnogo polya v provodyaschei zhidkosti s bystro menyayuschimsya polem skorostei”, Dokl. RAN, 360 (1998), 31–33 | MR | Zbl

[11] A. I. Esina, A. I. Shafarevich, “Delta-type solutions for the system of induction equations with discontinuous velocity field”, Methods Funct. Anal. Topology, 20:1 (2014), 17–33 | MR | Zbl

[12] A. I. Allilueva, A. I. Shafarevich, “Delta-type solutions for the non-Hermitian system of induction equations”, Internat. J. Theoret. Phys., 15:11 (2015), 3932–3944 | DOI | MR | Zbl

[13] V. V. Kucherenko, A. Kryvko, “Interaction of Alfven waves in the linearized system of magnetohydrodynamics for an incompressible ideal fluid”, Russ. J. Math. Phys., 20:1 (2013), 56–67 | DOI | MR | Zbl

[14] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1977 | MR | Zbl

[15] S. Yu. Dobrokhotov, V. P. Maslov, “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 15, VINITI, M., 1980, 3–94 | MR | Zbl

[16] A. Fridman, Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, M., Nauka, 1968 | MR | Zbl

[17] V. P. Maslov, Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987 | MR | Zbl

[18] A. I. Shafarevich, “Differentsialnye uravneniya na grafakh, opisyvayuschie asimptoticheskie resheniya uravnenii Nave–Stoksa, sosredotochennye v maloi okrestnosti krivoi”, Differents. uravneniya, 34:8 (1998), 1119–1130 | MR | Zbl

[19] V. P. Maslov, A. I. Shafarevich, “Rapidly oscillating asymptotic solutions of the Navier–Stokes equations, coherent structures, Fomenko invariants, Kolmogorov spectrum, and flicker noise”, Russ. J. Math. Phys., 13:4 (2006), 414–424 | DOI | MR | Zbl

[20] A. I. Shafarevich, “Asimptoticheskie resheniya uravnenii Nave–Stoksa, opisyvayuschie sglazhennye tangentsialnye razryvy”, Matem. zametki, 67:6 (2000), 938–949 | DOI | MR | Zbl