On the Homogenization Principle in a Time-Periodic Problem for the Navier--Stokes Equations with Rapidly Oscillating Mass Force
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 764-777.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of the set of time-periodic solutions of the three-dimensional system of Navier–Stokes equations in a bounded domain as the frequency of the oscillations of the right-hand side tends to infinity. It is established that the set of periodic solutions tends to the solution set of the homogenized stationary equation.
Keywords: system of Navier–Stokes equations, homogenization principle, Hilbert space, periodic solution, strong solution.
@article{MZM_2016_99_5_a9,
     author = {V. L. Khatskevich},
     title = {On the {Homogenization} {Principle} in a {Time-Periodic} {Problem} for the {Navier--Stokes} {Equations} with {Rapidly} {Oscillating} {Mass} {Force}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {764--777},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a9/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - On the Homogenization Principle in a Time-Periodic Problem for the Navier--Stokes Equations with Rapidly Oscillating Mass Force
JO  - Matematičeskie zametki
PY  - 2016
SP  - 764
EP  - 777
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a9/
LA  - ru
ID  - MZM_2016_99_5_a9
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T On the Homogenization Principle in a Time-Periodic Problem for the Navier--Stokes Equations with Rapidly Oscillating Mass Force
%J Matematičeskie zametki
%D 2016
%P 764-777
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a9/
%G ru
%F MZM_2016_99_5_a9
V. L. Khatskevich. On the Homogenization Principle in a Time-Periodic Problem for the Navier--Stokes Equations with Rapidly Oscillating Mass Force. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 764-777. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a9/

[1] B. M. Levitan, V. V. Zhikov, Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR | Zbl

[2] I. B. Simonenko, Metod usredneniya v teorii nelineinykh uravnenii parabolicheskogo tipa s prilozheniem k zadacham gidrodinamicheskoi ustoichivosti, Izd-vo Rostovsk. gos. un-ta, Rostov-na-Donu, 1989

[3] V. B. Levenshtam, “Obosnovanie metoda usredneniya dlya parabolicheskikh uravnenii, soderzhaschikh bystroostsilliruyuschie slagaemye s bolshimi amplitudami”, Izv. RAN. Ser. matem., 70:2 (2006), 25–56 | DOI | MR | Zbl

[4] V. B. Levenshtam, “Obosnovanie metoda usredneniya dlya sistemy uravnenii s operatorom Nave–Stoksa v glavnoi chasti”, Algebra i analiz, 26:1 (2014), 94–127 | MR

[5] V. L. Khatskevich, “Usrednenie dissipativnykh differentsialnykh vklyuchenii”, Vestn. Sankt-Peterburgsk. un-ta. Ser. 1. Matem. Mekh. Astron., 1992, no. 4, 725–727

[6] V. L. Khatskevich, “Printsip usredneniya dlya monotonnykh differentsialnykh vklyuchenii”, Dokl. RAN, 357:1 (1997), 26–28 | MR | Zbl

[7] V. L. Khatskevich, “Ob asimptoticheskom predstavlenii resheniya nachalno-kraevoi zadachi sistemy Nave–Stoksa v sluchae bolshoi vyazkosti”, Dokl. RAN, 362:6 (1998), 773–775 | MR | Zbl

[8] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR | Zbl

[9] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[10] R. Temam, Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[11] V.I. Yudovich, “Periodicheskie dvizheniya vyazkoi neszhimaemoi zhidkosti”, Dokl. AN SSSR, 130:6 (1960), 1214–1217 | Zbl

[12] P. E. Sobolevskii, “Periodicheskie dvizheniya nelineino-vyazkoi zhidkosti”, Voprosy kachestvennoi teorii differentsialnykh uravnenii, Sb. nauchn. trudov, Nauka, Novosibirsk, 1988, 128–134 | MR

[13] Yu. V. Trubnikov, A. I. Perov, Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, Minsk, 1986 | MR | Zbl

[14] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl