Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_5_a9, author = {V. L. Khatskevich}, title = {On the {Homogenization} {Principle} in a {Time-Periodic} {Problem} for the {Navier--Stokes} {Equations} with {Rapidly} {Oscillating} {Mass} {Force}}, journal = {Matemati\v{c}eskie zametki}, pages = {764--777}, publisher = {mathdoc}, volume = {99}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a9/} }
TY - JOUR AU - V. L. Khatskevich TI - On the Homogenization Principle in a Time-Periodic Problem for the Navier--Stokes Equations with Rapidly Oscillating Mass Force JO - Matematičeskie zametki PY - 2016 SP - 764 EP - 777 VL - 99 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a9/ LA - ru ID - MZM_2016_99_5_a9 ER -
%0 Journal Article %A V. L. Khatskevich %T On the Homogenization Principle in a Time-Periodic Problem for the Navier--Stokes Equations with Rapidly Oscillating Mass Force %J Matematičeskie zametki %D 2016 %P 764-777 %V 99 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a9/ %G ru %F MZM_2016_99_5_a9
V. L. Khatskevich. On the Homogenization Principle in a Time-Periodic Problem for the Navier--Stokes Equations with Rapidly Oscillating Mass Force. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 764-777. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a9/
[1] B. M. Levitan, V. V. Zhikov, Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR | Zbl
[2] I. B. Simonenko, Metod usredneniya v teorii nelineinykh uravnenii parabolicheskogo tipa s prilozheniem k zadacham gidrodinamicheskoi ustoichivosti, Izd-vo Rostovsk. gos. un-ta, Rostov-na-Donu, 1989
[3] V. B. Levenshtam, “Obosnovanie metoda usredneniya dlya parabolicheskikh uravnenii, soderzhaschikh bystroostsilliruyuschie slagaemye s bolshimi amplitudami”, Izv. RAN. Ser. matem., 70:2 (2006), 25–56 | DOI | MR | Zbl
[4] V. B. Levenshtam, “Obosnovanie metoda usredneniya dlya sistemy uravnenii s operatorom Nave–Stoksa v glavnoi chasti”, Algebra i analiz, 26:1 (2014), 94–127 | MR
[5] V. L. Khatskevich, “Usrednenie dissipativnykh differentsialnykh vklyuchenii”, Vestn. Sankt-Peterburgsk. un-ta. Ser. 1. Matem. Mekh. Astron., 1992, no. 4, 725–727
[6] V. L. Khatskevich, “Printsip usredneniya dlya monotonnykh differentsialnykh vklyuchenii”, Dokl. RAN, 357:1 (1997), 26–28 | MR | Zbl
[7] V. L. Khatskevich, “Ob asimptoticheskom predstavlenii resheniya nachalno-kraevoi zadachi sistemy Nave–Stoksa v sluchae bolshoi vyazkosti”, Dokl. RAN, 362:6 (1998), 773–775 | MR | Zbl
[8] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR | Zbl
[9] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl
[10] R. Temam, Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl
[11] V.I. Yudovich, “Periodicheskie dvizheniya vyazkoi neszhimaemoi zhidkosti”, Dokl. AN SSSR, 130:6 (1960), 1214–1217 | Zbl
[12] P. E. Sobolevskii, “Periodicheskie dvizheniya nelineino-vyazkoi zhidkosti”, Voprosy kachestvennoi teorii differentsialnykh uravnenii, Sb. nauchn. trudov, Nauka, Novosibirsk, 1988, 128–134 | MR
[13] Yu. V. Trubnikov, A. I. Perov, Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, Minsk, 1986 | MR | Zbl
[14] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl