Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_5_a6, author = {A. M. Savchuk}, title = {Reconstruction of the {Potential} of the {Sturm--Liouville} {Operator} from a {Finite} {Set} of {Eigenvalues} and {Normalizing} {Constants}}, journal = {Matemati\v{c}eskie zametki}, pages = {715--731}, publisher = {mathdoc}, volume = {99}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/} }
TY - JOUR AU - A. M. Savchuk TI - Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants JO - Matematičeskie zametki PY - 2016 SP - 715 EP - 731 VL - 99 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/ LA - ru ID - MZM_2016_99_5_a6 ER -
%0 Journal Article %A A. M. Savchuk %T Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants %J Matematičeskie zametki %D 2016 %P 715-731 %V 99 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/ %G ru %F MZM_2016_99_5_a6
A. M. Savchuk. Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 715-731. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/
[1] V. A. Ambarzumian, “Über eine Frage der Eigenwerttheorie”, Z. für Physik, 53:9 (1929), 690–695 | DOI | Zbl
[2] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007
[3] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl
[4] A. M. Savchuk, A. A. Shkalikov, Tr. MMO, 64, 2003, 159–212 | MR | Zbl
[5] A. M. Savchuk, A. A. Shkalikov, “Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra”, Russ. J. Math. Phys., 12:4 (2005), 507–514 | MR | Zbl
[6] A. M. Savchuk, A. A. Shkalikov, “O svoistvakh otobrazhenii, svyazannykh s obratnymi zadachami Shturma–Liuvillya”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Tr. MIAN, 260, MAIK, M., 2008, 227–247 | MR | Zbl
[7] A. M. Savchuk, A. A. Shkalikov, “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | MR | Zbl
[8] A. M. Savchuk, A. A. Shkalikov, “Ravnomernaya ustoichivost obratnoi zadachi Shturma–Liuvillya po spektralnoi funktsii v shkale sobolevskikh prostranstv”, Teoriya funktsii i uravneniya matematicheskoi fiziki, Tr. MIAN, 283, MAIK, M., 2013, 188–203 | DOI
[9] A. M. Savchuk, A. A. Shkalikov, “Recovering of a potential of the Sturm–Liouville problem from finite sets of spectral data”, Spectral Theory and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 233, Amer. Math. Soc., Providence, RI, 2014, 211–224 | MR
[10] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl
[11] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl
[12] K. Chadan, P. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, New York, 1977 | MR | Zbl
[13] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, Boston, MA, 1987 | MR | Zbl
[14] G. Freiling, V. Yurko, Inverse Sturm–Liouville Problems and Their Applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl
[15] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl
[16] N. Levinson, “The inverse Sturm–Liouville problem”, Mat. Tidsskr. B., 1949 (1949), 25–30 | MR | Zbl
[17] B. M. Levitan, M. G. Gasymov, “Opredelenie differentsialnogo uravneniya po dvum spektram”, UMN, 19:2 (116) (1964), 3–63 | MR | Zbl
[18] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. matem., 15:4 (1951), 309–360 | MR | Zbl
[19] V. A. Marchenko, “Nekotorye voprosy teorii odnomernykh lineinykh differentsialnykh operatorov vtorogo poryadka. I”, Tr. MMO, 1, GITTL, M.-L., 1952, 327–420 | MR | Zbl
[20] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, Matem. sb., 97 (139):4 (8) (1975), 540–606 | MR | Zbl
[21] M. G. Krein, “Reshenie obratnoi zadachi Shturma–Liuvillya”, Dokl. AN SSSR, 76 (1951), 21–24 | Zbl
[22] M. G. Krein, “Ob odnom metode effektivnogo resheniya obratnoi zadachi”, Dokl. AN SSSR, 94 (1954), 987–990 | Zbl
[23] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Problems, 19:3 (2003) | DOI | MR | Zbl
[24] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials. II. Reconstruction by two spectra”, Functional Analysis and Its Applications, North-Holland Math. Stud., 197, North-Holland Publ., Amsterdam, 2004, 97–114 | MR | Zbl
[25] R. O. Hryniv, Ya. V. Mykytyuk, “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. Geom., 7:2 (2004), 119–149 | DOI | MR | Zbl
[26] R. O. Hryniv, Ya. V. Mykytyuk, “Eigenvalue asymptotics for Sturm–Liouville operators with singular potentials”, J. Funct. Anal., 238:1 (2006), 27–57 | DOI | MR | Zbl
[27] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV. Potentials in the Sobolev space scale”, Proc. Edinb. Math. Soc. (2), 49:2 (2006), 309–329 | DOI | MR | Zbl
[28] P. B. Dzhakov, B. S. Mityagin, “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61:4 (370) (2006), 77–182 | DOI | MR | Zbl
[29] P. Djakov, B. M. Mityagin, “Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials”, Integral Transforms Spec. Funct., 20:3-4 (2009), 265–273 | DOI | MR | Zbl
[30] V. A. Marchenko, K. V. Maslov, “Ustoichivost zadachi vosstanovleniya operatora Shturma–Liuvillya po spektralnoi funktsii”, Matem. sb., 81 (123):4 (1970), 525–551 | MR | Zbl
[31] V. A. Yurko, “Ob ustoichivosti vosstanovleniya operatorov Shturma–Liuvillya”, Differents. uravneniya i teoriya funktsii, 3 (1980), 113–124
[32] T. I. Ryabushko, “Ustoichivost vosstanovleniya operatora Shturma–Liuvillya po dvum spektram”, Teoriya funktsii, funkts. analiz i ikh prilozh., 18 (1973), 176–185 | Zbl
[33] T. I. Ryabushko, “Otsenki normy raznosti dvukh potentsialov v kraevoi zadache Shturma–Liuvillya”, Teoriya funktsii, funkts. analiz i ikh prilozh., 39 (1983), 114–117 | MR | Zbl
[34] R. O. Hryniv, “Analyticity and uniform stability in the inverse singular Sturm–Liouville spectral problem”, Inverse Problems, 27:6 (2011), 065011 | DOI | MR | Zbl
[35] J. R. Mclaughlin, “Stability theorems for two inverse spectral problems”, Inverse Problems, 4:2 (1988), 529–540 | DOI | MR | Zbl
[36] M. Hitrik, “Stability of an inverse problem in potential scattering on the real line”, Comm. Partial Differential Equations, 25:5-6 (2000), 925–955 | DOI | MR | Zbl
[37] E. Korotyaev, “Stability for inverse resonance problem”, Int. Math. Res. Not., 73 (2004), 3927–3936 | DOI | MR | Zbl
[38] A. L. Andrew, “Computing Sturm–Liouville potentials from two spectra”, Inverse Problems, 22:6 (2006), 2069–2081 | DOI | MR | Zbl
[39] B. M. Brown, V. S. Samko, I. W. Knowles, M. Marletta, “Inverse spectral problem for the Sturm–Liouville equation”, Inverse Problems, 19:1 (2003), 235–252 | DOI | MR | Zbl
[40] O. H. Hald, “The inverse Sturm–Liouville problem with symmetric potentials”, Acta Math., 141:3-4 (1978), 263–291 | DOI | MR | Zbl
[41] J. Paine, “A numerical method for the inverse Sturm–Liouville problem”, SIAM J. Sci. Statist. Comput., 5:1 (1984), 149–156 | DOI | MR | Zbl
[42] N. Röhrl, “A least-squares functional for solving inverse Sturm–Liouville problems”, Inverse Problems, 21:6 (2005), 2009–2017 | DOI | MR | Zbl
[43] W. Rundell, P. E. Sacks, “Reconstruction techniques for classical inverse Sturm–Liouville problems”, Math. Comp., 58:197 (1992), 161–183 | DOI | MR | Zbl
[44] M. Marletta, R. Weikard, “Weak stability for an inverse Sturm–Liouville problem with finite spectral data and complex potential”, Inverse Problems, 21:4 (2005), 1275–1290 | DOI | MR | Zbl
[45] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[46] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. T. 1. Obobschennye funktsii i deistviya s nimi, Fizmatgiz, M., 1959 | Zbl