Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 715-731
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that the potential $q$ of the Sturm–Liouville operator $$ Ly=-y''+q(x)y $$ on the finite interval $[0,\pi]$ can be uniquely reconstructed from the spectrum $\{\lambda_k\}_1^\infty$ and the normalizing numbers $\{\alpha_k\}_1^\infty$ of the operator $L_D$ with the Dirichlet conditions. For an arbitrary real-valued potential $q$ lying in the Sobolev space $W^\theta_2[0,\pi]$, $\theta>-1$, we construct a function $q_N$ providing a $2N$-approximation to the potential on the basis of the finite spectral data set $\{\lambda_k\}_1^N\cup\{\alpha_k\}_1^N$. The main result is that, for arbitrary $\tau$ in the interval $-1\le\tau \theta$, the estimate $$ \|q-q_N\|_\tau \le CN^{\tau-\theta} $$ is true, where $\|\cdot\|_\tau$ is the norm on the Sobolev space $W^\tau_2$. The constant $C$ depends solely on $\|q\|_\theta$.
Keywords:
Sturm–Liouville operator, inverse problem, reconstruction of the potential, spectral data.
@article{MZM_2016_99_5_a6,
author = {A. M. Savchuk},
title = {Reconstruction of the {Potential} of the {Sturm--Liouville} {Operator} from a {Finite} {Set} of {Eigenvalues} and {Normalizing} {Constants}},
journal = {Matemati\v{c}eskie zametki},
pages = {715--731},
publisher = {mathdoc},
volume = {99},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/}
}
TY - JOUR AU - A. M. Savchuk TI - Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants JO - Matematičeskie zametki PY - 2016 SP - 715 EP - 731 VL - 99 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/ LA - ru ID - MZM_2016_99_5_a6 ER -
%0 Journal Article %A A. M. Savchuk %T Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants %J Matematičeskie zametki %D 2016 %P 715-731 %V 99 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/ %G ru %F MZM_2016_99_5_a6
A. M. Savchuk. Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 715-731. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/