Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 715-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the potential $q$ of the Sturm–Liouville operator $$ Ly=-y''+q(x)y $$ on the finite interval $[0,\pi]$ can be uniquely reconstructed from the spectrum $\{\lambda_k\}_1^\infty$ and the normalizing numbers $\{\alpha_k\}_1^\infty$ of the operator $L_D$ with the Dirichlet conditions. For an arbitrary real-valued potential $q$ lying in the Sobolev space $W^\theta_2[0,\pi]$, $\theta>-1$, we construct a function $q_N$ providing a $2N$-approximation to the potential on the basis of the finite spectral data set $\{\lambda_k\}_1^N\cup\{\alpha_k\}_1^N$. The main result is that, for arbitrary $\tau$ in the interval $-1\le\tau \theta$, the estimate $$ \|q-q_N\|_\tau \le CN^{\tau-\theta} $$ is true, where $\|\cdot\|_\tau$ is the norm on the Sobolev space $W^\tau_2$. The constant $C$ depends solely on $\|q\|_\theta$.
Keywords: Sturm–Liouville operator, inverse problem, reconstruction of the potential, spectral data.
@article{MZM_2016_99_5_a6,
     author = {A. M. Savchuk},
     title = {Reconstruction of the {Potential} of the {Sturm--Liouville} {Operator} from a {Finite} {Set} of {Eigenvalues} and {Normalizing} {Constants}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {715--731},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/}
}
TY  - JOUR
AU  - A. M. Savchuk
TI  - Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants
JO  - Matematičeskie zametki
PY  - 2016
SP  - 715
EP  - 731
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/
LA  - ru
ID  - MZM_2016_99_5_a6
ER  - 
%0 Journal Article
%A A. M. Savchuk
%T Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants
%J Matematičeskie zametki
%D 2016
%P 715-731
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/
%G ru
%F MZM_2016_99_5_a6
A. M. Savchuk. Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 715-731. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/

[1] V. A. Ambarzumian, “Über eine Frage der Eigenwerttheorie”, Z. für Physik, 53:9 (1929), 690–695 | DOI | Zbl

[2] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007

[3] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[4] A. M. Savchuk, A. A. Shkalikov, Tr. MMO, 64, 2003, 159–212 | MR | Zbl

[5] A. M. Savchuk, A. A. Shkalikov, “Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra”, Russ. J. Math. Phys., 12:4 (2005), 507–514 | MR | Zbl

[6] A. M. Savchuk, A. A. Shkalikov, “O svoistvakh otobrazhenii, svyazannykh s obratnymi zadachami Shturma–Liuvillya”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Tr. MIAN, 260, MAIK, M., 2008, 227–247 | MR | Zbl

[7] A. M. Savchuk, A. A. Shkalikov, “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | MR | Zbl

[8] A. M. Savchuk, A. A. Shkalikov, “Ravnomernaya ustoichivost obratnoi zadachi Shturma–Liuvillya po spektralnoi funktsii v shkale sobolevskikh prostranstv”, Teoriya funktsii i uravneniya matematicheskoi fiziki, Tr. MIAN, 283, MAIK, M., 2013, 188–203 | DOI

[9] A. M. Savchuk, A. A. Shkalikov, “Recovering of a potential of the Sturm–Liouville problem from finite sets of spectral data”, Spectral Theory and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 233, Amer. Math. Soc., Providence, RI, 2014, 211–224 | MR

[10] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[11] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[12] K. Chadan, P. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, New York, 1977 | MR | Zbl

[13] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, Boston, MA, 1987 | MR | Zbl

[14] G. Freiling, V. Yurko, Inverse Sturm–Liouville Problems and Their Applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl

[15] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl

[16] N. Levinson, “The inverse Sturm–Liouville problem”, Mat. Tidsskr. B., 1949 (1949), 25–30 | MR | Zbl

[17] B. M. Levitan, M. G. Gasymov, “Opredelenie differentsialnogo uravneniya po dvum spektram”, UMN, 19:2 (116) (1964), 3–63 | MR | Zbl

[18] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. matem., 15:4 (1951), 309–360 | MR | Zbl

[19] V. A. Marchenko, “Nekotorye voprosy teorii odnomernykh lineinykh differentsialnykh operatorov vtorogo poryadka. I”, Tr. MMO, 1, GITTL, M.-L., 1952, 327–420 | MR | Zbl

[20] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, Matem. sb., 97 (139):4 (8) (1975), 540–606 | MR | Zbl

[21] M. G. Krein, “Reshenie obratnoi zadachi Shturma–Liuvillya”, Dokl. AN SSSR, 76 (1951), 21–24 | Zbl

[22] M. G. Krein, “Ob odnom metode effektivnogo resheniya obratnoi zadachi”, Dokl. AN SSSR, 94 (1954), 987–990 | Zbl

[23] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Problems, 19:3 (2003) | DOI | MR | Zbl

[24] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials. II. Reconstruction by two spectra”, Functional Analysis and Its Applications, North-Holland Math. Stud., 197, North-Holland Publ., Amsterdam, 2004, 97–114 | MR | Zbl

[25] R. O. Hryniv, Ya. V. Mykytyuk, “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. Geom., 7:2 (2004), 119–149 | DOI | MR | Zbl

[26] R. O. Hryniv, Ya. V. Mykytyuk, “Eigenvalue asymptotics for Sturm–Liouville operators with singular potentials”, J. Funct. Anal., 238:1 (2006), 27–57 | DOI | MR | Zbl

[27] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV. Potentials in the Sobolev space scale”, Proc. Edinb. Math. Soc. (2), 49:2 (2006), 309–329 | DOI | MR | Zbl

[28] P. B. Dzhakov, B. S. Mityagin, “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61:4 (370) (2006), 77–182 | DOI | MR | Zbl

[29] P. Djakov, B. M. Mityagin, “Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials”, Integral Transforms Spec. Funct., 20:3-4 (2009), 265–273 | DOI | MR | Zbl

[30] V. A. Marchenko, K. V. Maslov, “Ustoichivost zadachi vosstanovleniya operatora Shturma–Liuvillya po spektralnoi funktsii”, Matem. sb., 81 (123):4 (1970), 525–551 | MR | Zbl

[31] V. A. Yurko, “Ob ustoichivosti vosstanovleniya operatorov Shturma–Liuvillya”, Differents. uravneniya i teoriya funktsii, 3 (1980), 113–124

[32] T. I. Ryabushko, “Ustoichivost vosstanovleniya operatora Shturma–Liuvillya po dvum spektram”, Teoriya funktsii, funkts. analiz i ikh prilozh., 18 (1973), 176–185 | Zbl

[33] T. I. Ryabushko, “Otsenki normy raznosti dvukh potentsialov v kraevoi zadache Shturma–Liuvillya”, Teoriya funktsii, funkts. analiz i ikh prilozh., 39 (1983), 114–117 | MR | Zbl

[34] R. O. Hryniv, “Analyticity and uniform stability in the inverse singular Sturm–Liouville spectral problem”, Inverse Problems, 27:6 (2011), 065011 | DOI | MR | Zbl

[35] J. R. Mclaughlin, “Stability theorems for two inverse spectral problems”, Inverse Problems, 4:2 (1988), 529–540 | DOI | MR | Zbl

[36] M. Hitrik, “Stability of an inverse problem in potential scattering on the real line”, Comm. Partial Differential Equations, 25:5-6 (2000), 925–955 | DOI | MR | Zbl

[37] E. Korotyaev, “Stability for inverse resonance problem”, Int. Math. Res. Not., 73 (2004), 3927–3936 | DOI | MR | Zbl

[38] A. L. Andrew, “Computing Sturm–Liouville potentials from two spectra”, Inverse Problems, 22:6 (2006), 2069–2081 | DOI | MR | Zbl

[39] B. M. Brown, V. S. Samko, I. W. Knowles, M. Marletta, “Inverse spectral problem for the Sturm–Liouville equation”, Inverse Problems, 19:1 (2003), 235–252 | DOI | MR | Zbl

[40] O. H. Hald, “The inverse Sturm–Liouville problem with symmetric potentials”, Acta Math., 141:3-4 (1978), 263–291 | DOI | MR | Zbl

[41] J. Paine, “A numerical method for the inverse Sturm–Liouville problem”, SIAM J. Sci. Statist. Comput., 5:1 (1984), 149–156 | DOI | MR | Zbl

[42] N. Röhrl, “A least-squares functional for solving inverse Sturm–Liouville problems”, Inverse Problems, 21:6 (2005), 2009–2017 | DOI | MR | Zbl

[43] W. Rundell, P. E. Sacks, “Reconstruction techniques for classical inverse Sturm–Liouville problems”, Math. Comp., 58:197 (1992), 161–183 | DOI | MR | Zbl

[44] M. Marletta, R. Weikard, “Weak stability for an inverse Sturm–Liouville problem with finite spectral data and complex potential”, Inverse Problems, 21:4 (2005), 1275–1290 | DOI | MR | Zbl

[45] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[46] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. T. 1. Obobschennye funktsii i deistviya s nimi, Fizmatgiz, M., 1959 | Zbl