Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 715-731

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the potential $q$ of the Sturm–Liouville operator $$ Ly=-y''+q(x)y $$ on the finite interval $[0,\pi]$ can be uniquely reconstructed from the spectrum $\{\lambda_k\}_1^\infty$ and the normalizing numbers $\{\alpha_k\}_1^\infty$ of the operator $L_D$ with the Dirichlet conditions. For an arbitrary real-valued potential $q$ lying in the Sobolev space $W^\theta_2[0,\pi]$, $\theta>-1$, we construct a function $q_N$ providing a $2N$-approximation to the potential on the basis of the finite spectral data set $\{\lambda_k\}_1^N\cup\{\alpha_k\}_1^N$. The main result is that, for arbitrary $\tau$ in the interval $-1\le\tau \theta$, the estimate $$ \|q-q_N\|_\tau \le CN^{\tau-\theta} $$ is true, where $\|\cdot\|_\tau$ is the norm on the Sobolev space $W^\tau_2$. The constant $C$ depends solely on $\|q\|_\theta$.
Keywords: Sturm–Liouville operator, inverse problem, reconstruction of the potential, spectral data.
@article{MZM_2016_99_5_a6,
     author = {A. M. Savchuk},
     title = {Reconstruction of the {Potential} of the {Sturm--Liouville} {Operator} from a {Finite} {Set} of {Eigenvalues} and {Normalizing} {Constants}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {715--731},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/}
}
TY  - JOUR
AU  - A. M. Savchuk
TI  - Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants
JO  - Matematičeskie zametki
PY  - 2016
SP  - 715
EP  - 731
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/
LA  - ru
ID  - MZM_2016_99_5_a6
ER  - 
%0 Journal Article
%A A. M. Savchuk
%T Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants
%J Matematičeskie zametki
%D 2016
%P 715-731
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/
%G ru
%F MZM_2016_99_5_a6
A. M. Savchuk. Reconstruction of the Potential of the Sturm--Liouville Operator from a Finite Set of Eigenvalues and Normalizing Constants. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 715-731. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a6/