The Problem of Approximation in Mean on Arcs in the Complex Plane
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 698-714
Voir la notice de l'article provenant de la source Math-Net.Ru
Classical theorems on the approximation of curves in the complex domain are studied; in particular, direct and inverse theorems on the arcs $\Gamma$ in the complex plane in the metric of $L_p(\Gamma)$ are obtained. The results obtained are new in the case of a closed interval $[-1,1]$ as well.
Keywords:
approximation of curves in the complex domain, Jackson–Bernstein theorem, Lipschitz condition, Newman problem, Jordan curve, Jackson–Dzyadyk polynomial, Minkowski inequality.
@article{MZM_2016_99_5_a5,
author = {J. I. Mamedkhanov},
title = {The {Problem} of {Approximation} in {Mean} on {Arcs} in the {Complex} {Plane}},
journal = {Matemati\v{c}eskie zametki},
pages = {698--714},
publisher = {mathdoc},
volume = {99},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a5/}
}
J. I. Mamedkhanov. The Problem of Approximation in Mean on Arcs in the Complex Plane. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 698-714. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a5/