Fundamental Principle and a Basis in Invariant Subspaces
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 684-697.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, first-order complex sequences with finite maximal angular density are studied. A criterion for such a sequence to be a part of a regularly distributed set with a given angular density is obtained. Using this criterion, we present complete solutions of fundamental principle problems and basis for an invariant subspace of analytic functions in a bounded convex domain.
Keywords: complex sequence with finite maximal angular density, regularly distributed set, fundamental principle, basis of an invariant subspace.
@article{MZM_2016_99_5_a4,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Fundamental {Principle} and a {Basis} in {Invariant} {Subspaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {684--697},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Fundamental Principle and a Basis in Invariant Subspaces
JO  - Matematičeskie zametki
PY  - 2016
SP  - 684
EP  - 697
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/
LA  - ru
ID  - MZM_2016_99_5_a4
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Fundamental Principle and a Basis in Invariant Subspaces
%J Matematičeskie zametki
%D 2016
%P 684-697
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/
%G ru
%F MZM_2016_99_5_a4
A. S. Krivosheev; O. A. Krivosheeva. Fundamental Principle and a Basis in Invariant Subspaces. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 684-697. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/

[1] I. F. Krasichkov-Ternovskii, “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88 (130):1 (5) (1972), 3–30 | MR | Zbl

[2] A. A. Goldberg, B. Ya. Levin, I. V. Ostrovskii, “Tselye i meromorfnye funktsii”, Kompleksnyi analiz. Odna peremennaya – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 85, VINITI, M., 1991, 5–185 | MR | Zbl

[3] A. S. Krivosheev, “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. matem., 68:2 (2004), 71–136 | DOI | MR | Zbl

[4] N. K. Nikolskii, “Sovremennoe sostoyanie problemy spektralnogo analiza-sinteza. I”, Teoriya operatorov v funktsionalnykh prostranstvakh, Nauka, Novosibirsk, 1977, 240–282

[5] N. K. Nikolskii, “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhn. Ser. Mat. anal., 12, VINITI, M., 1974, 199–412 | MR | Zbl

[6] O. A. Krivosheeva, A. S. Krivosheev, “Kriterii vypolneniya fundamentalnogo printsipa dlya invariantnykh podprostranstv v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Funkts. analiz i ego pril., 46:4 (2012), 14–30 | DOI | MR | Zbl

[7] A. S. Krivosheev, O. A. Krivosheeva, “Bazis v invariantnom podprostranstve analiticheskikh funktsii”, Matem. sb., 204:12 (2013), 49–104 | DOI | MR | Zbl

[8] P. Koosis, The Logarithmic Integral, V. I, Cambridge Stud. in Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988 | Zbl

[9] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR | Zbl

[10] A. F. Leontev, “Tselye funktsii. Ryady eksponent”, Nauka, M., 1983 | MR | Zbl

[11] G. L. Lunts, “Ob odnoi teoreme, svyazannoi s rostom tselykh funktsii tselogo poryadka”, Izv. AN Arm. SSR, 5:4 (1970), 358–370