Fundamental Principle and a Basis in Invariant Subspaces
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 684-697
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, first-order complex sequences with finite maximal angular density are studied. A criterion for such a sequence to be a part of a regularly distributed set with a given angular density is obtained. Using this criterion, we present complete solutions of fundamental principle problems and basis for an invariant subspace of analytic functions in a bounded convex domain.
Keywords:
complex sequence with finite maximal angular density, regularly distributed set, fundamental principle, basis of an invariant subspace.
@article{MZM_2016_99_5_a4,
author = {A. S. Krivosheev and O. A. Krivosheeva},
title = {Fundamental {Principle} and a {Basis} in {Invariant} {Subspaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {684--697},
publisher = {mathdoc},
volume = {99},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/}
}
A. S. Krivosheev; O. A. Krivosheeva. Fundamental Principle and a Basis in Invariant Subspaces. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 684-697. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/