Fundamental Principle and a Basis in Invariant Subspaces
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 684-697

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, first-order complex sequences with finite maximal angular density are studied. A criterion for such a sequence to be a part of a regularly distributed set with a given angular density is obtained. Using this criterion, we present complete solutions of fundamental principle problems and basis for an invariant subspace of analytic functions in a bounded convex domain.
Keywords: complex sequence with finite maximal angular density, regularly distributed set, fundamental principle, basis of an invariant subspace.
@article{MZM_2016_99_5_a4,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Fundamental {Principle} and a {Basis} in {Invariant} {Subspaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {684--697},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Fundamental Principle and a Basis in Invariant Subspaces
JO  - Matematičeskie zametki
PY  - 2016
SP  - 684
EP  - 697
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/
LA  - ru
ID  - MZM_2016_99_5_a4
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Fundamental Principle and a Basis in Invariant Subspaces
%J Matematičeskie zametki
%D 2016
%P 684-697
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/
%G ru
%F MZM_2016_99_5_a4
A. S. Krivosheev; O. A. Krivosheeva. Fundamental Principle and a Basis in Invariant Subspaces. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 684-697. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a4/