On Generalized Bohr--Sommerfeld Quantization Rules for Operators with PT Symmetry
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 673-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give Bohr–Sommerfeld rules corresponding to quasi-eigenvalues in the pseudospectrum for a one-dimensional $h$-pseudodifferential operator verifying PT symmetry.
Keywords: Bohr–Sommerfeld rule, $h$-pseudodifferential operator, PT symmetry
Mots-clés : principal symbol, sub-principal symbol, Weyl quantization, quasi-mode.
@article{MZM_2016_99_5_a3,
     author = {A. Ifa and N. M'Hadbi and M. Rouleux},
     title = {On {Generalized} {Bohr--Sommerfeld} {Quantization} {Rules} for {Operators} with {PT} {Symmetry}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {673--683},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a3/}
}
TY  - JOUR
AU  - A. Ifa
AU  - N. M'Hadbi
AU  - M. Rouleux
TI  - On Generalized Bohr--Sommerfeld Quantization Rules for Operators with PT Symmetry
JO  - Matematičeskie zametki
PY  - 2016
SP  - 673
EP  - 683
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a3/
LA  - ru
ID  - MZM_2016_99_5_a3
ER  - 
%0 Journal Article
%A A. Ifa
%A N. M'Hadbi
%A M. Rouleux
%T On Generalized Bohr--Sommerfeld Quantization Rules for Operators with PT Symmetry
%J Matematičeskie zametki
%D 2016
%P 673-683
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a3/
%G ru
%F MZM_2016_99_5_a3
A. Ifa; N. M'Hadbi; M. Rouleux. On Generalized Bohr--Sommerfeld Quantization Rules for Operators with PT Symmetry. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 673-683. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a3/

[1] Y. Colin de Verdière, “Bohr–Sommerfeld Rules to All Orders”, Ann. Henri Poincaré, 6:5 (2005), 925–936 | DOI | MR | Zbl

[2] B. Helffer, D. Robert, “Puits de potentiel generalisés et asymptotique semi-classique”, Ann. Inst. H. Poincaré Phys. Théor., 41:3 (1984), 291–331 | MR | Zbl

[3] A. Voros, “Asymptotic $\hbar$-expansions of stationary quantum states”, Ann. Inst. H. Poincaré Sect. A (N.S.), 26:4 (1977), 343–403 | MR

[4] P. Argyres, “The Bohr–Sommerfeld quantization rule and Weyl correspondence”, Physics, 2 (1995), 131–199

[5] R. Littlejohn, Lie Algebraic Approach to Higher-Order Terms, Preprint, 2003

[6] M. Cargo, A. Gracia-Saz, R. G. Littlejohn, M. W. Reinsch, P. de M. Rios, “Moyal star product approach to the Bohr–Sommerfeld approximation”, J. Phys. A. Math. Gen., 38:9 (2005), 1977–2004 | DOI | MR | Zbl

[7] A. Gracia-Saz, “The symbol of a function of a pseudo-differential operator.”, Ann. Inst. Fourier (Grenoble), 55:7 (2005), 2257–2284 | DOI | MR | Zbl

[8] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[9] E. Delabaere, H. Dillinger, F. Pham, “Exact semiclassical expansions for $1$-D quantum oscillators”, J. Math. Phys., 38:12 (1997), 6126–6184 | DOI | MR | Zbl

[10] A. I. Esina, A. I. Shafarevich, “Usloviya kvantovaniya na rimanovykh poverkhnostyakh i kvaziklassicheskii spektr operatora Shredingera s kompleksnym potentsialom”, Matem. zametki, 88:2 (2010), 229–248 | DOI | MR | Zbl

[11] J. Sjöstrand, Weyl Law for Semi-Classical Resonances with Randomly Perturbed Potentials, Mém. Soc. Math. France, 136, Soc. Math. de France, Paris, 2014

[12] B. Helffer, J. Sjöstrand, Semi-Classical Analysis for Harper's Equation. III. Cantor Structure of the Spectrum, Mém. Soc. Math. France, 39, Soc. Math. de France, Paris, 1989

[13] N. Boussekine, N. Mecherout, PT-symétrie et puits de potentiel, arXiv: 1310.7335v1

[14] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl

[15] M. Hitrik, J. Sjöstrand, S. Vũ-Ngoc, “Diophantine tori and spectral asymptotics for non-self adjoint operators”, Amer. J. Math., 129:1 (2007), 105–182 | DOI | MR | Zbl