Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_5_a3, author = {A. Ifa and N. M'Hadbi and M. Rouleux}, title = {On {Generalized} {Bohr--Sommerfeld} {Quantization} {Rules} for {Operators} with {PT} {Symmetry}}, journal = {Matemati\v{c}eskie zametki}, pages = {673--683}, publisher = {mathdoc}, volume = {99}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a3/} }
TY - JOUR AU - A. Ifa AU - N. M'Hadbi AU - M. Rouleux TI - On Generalized Bohr--Sommerfeld Quantization Rules for Operators with PT Symmetry JO - Matematičeskie zametki PY - 2016 SP - 673 EP - 683 VL - 99 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a3/ LA - ru ID - MZM_2016_99_5_a3 ER -
A. Ifa; N. M'Hadbi; M. Rouleux. On Generalized Bohr--Sommerfeld Quantization Rules for Operators with PT Symmetry. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 673-683. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a3/
[1] Y. Colin de Verdière, “Bohr–Sommerfeld Rules to All Orders”, Ann. Henri Poincaré, 6:5 (2005), 925–936 | DOI | MR | Zbl
[2] B. Helffer, D. Robert, “Puits de potentiel generalisés et asymptotique semi-classique”, Ann. Inst. H. Poincaré Phys. Théor., 41:3 (1984), 291–331 | MR | Zbl
[3] A. Voros, “Asymptotic $\hbar$-expansions of stationary quantum states”, Ann. Inst. H. Poincaré Sect. A (N.S.), 26:4 (1977), 343–403 | MR
[4] P. Argyres, “The Bohr–Sommerfeld quantization rule and Weyl correspondence”, Physics, 2 (1995), 131–199
[5] R. Littlejohn, Lie Algebraic Approach to Higher-Order Terms, Preprint, 2003
[6] M. Cargo, A. Gracia-Saz, R. G. Littlejohn, M. W. Reinsch, P. de M. Rios, “Moyal star product approach to the Bohr–Sommerfeld approximation”, J. Phys. A. Math. Gen., 38:9 (2005), 1977–2004 | DOI | MR | Zbl
[7] A. Gracia-Saz, “The symbol of a function of a pseudo-differential operator.”, Ann. Inst. Fourier (Grenoble), 55:7 (2005), 2257–2284 | DOI | MR | Zbl
[8] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl
[9] E. Delabaere, H. Dillinger, F. Pham, “Exact semiclassical expansions for $1$-D quantum oscillators”, J. Math. Phys., 38:12 (1997), 6126–6184 | DOI | MR | Zbl
[10] A. I. Esina, A. I. Shafarevich, “Usloviya kvantovaniya na rimanovykh poverkhnostyakh i kvaziklassicheskii spektr operatora Shredingera s kompleksnym potentsialom”, Matem. zametki, 88:2 (2010), 229–248 | DOI | MR | Zbl
[11] J. Sjöstrand, Weyl Law for Semi-Classical Resonances with Randomly Perturbed Potentials, Mém. Soc. Math. France, 136, Soc. Math. de France, Paris, 2014
[12] B. Helffer, J. Sjöstrand, Semi-Classical Analysis for Harper's Equation. III. Cantor Structure of the Spectrum, Mém. Soc. Math. France, 39, Soc. Math. de France, Paris, 1989
[13] N. Boussekine, N. Mecherout, PT-symétrie et puits de potentiel, arXiv: 1310.7335v1
[14] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl
[15] M. Hitrik, J. Sjöstrand, S. Vũ-Ngoc, “Diophantine tori and spectral asymptotics for non-self adjoint operators”, Amer. J. Math., 129:1 (2007), 105–182 | DOI | MR | Zbl