On the Regularity of Solutions of Variational and Boundary-Value Problems in Domains with H\"older Boundary
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 794-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: variational problem, boundary-value problem, Hölder boundary, Riemannian manifold, fiber bundle, atlas, chart, diffeomorphism, Friedrichs construction, Nikol'skii space
Mots-clés : Besov space, Gâteaux derivative.
@article{MZM_2016_99_5_a13,
     author = {I. V. Tsylin},
     title = {On the {Regularity} of {Solutions} of {Variational} and {Boundary-Value} {Problems} in {Domains} with {H\"older} {Boundary}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {794--800},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a13/}
}
TY  - JOUR
AU  - I. V. Tsylin
TI  - On the Regularity of Solutions of Variational and Boundary-Value Problems in Domains with H\"older Boundary
JO  - Matematičeskie zametki
PY  - 2016
SP  - 794
EP  - 800
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a13/
LA  - ru
ID  - MZM_2016_99_5_a13
ER  - 
%0 Journal Article
%A I. V. Tsylin
%T On the Regularity of Solutions of Variational and Boundary-Value Problems in Domains with H\"older Boundary
%J Matematičeskie zametki
%D 2016
%P 794-800
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a13/
%G ru
%F MZM_2016_99_5_a13
I. V. Tsylin. On the Regularity of Solutions of Variational and Boundary-Value Problems in Domains with H\"older Boundary. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 794-800. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a13/

[1] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., 105, Princeton Univ. Press, Princeton, 1983 | MR | Zbl

[2] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren Math. Wiss., 132, Springer, New York, 1966 | MR | Zbl

[3] G. Savaré, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl

[4] A. M. Stepin, I. V. Tsylin, Dokl. RAN, 463:2 (2015), 144–148 | DOI | Zbl

[5] M. S. Agranovich, Sobolevskie prostranstva, ikh obobscheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, MTsNMO, M., 2013

[6] T. Muramatu, Publ. Res. Inst. Math. Sci., 12:1 (1976), 123–140 | DOI | MR | Zbl

[7] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR | Zbl

[8] M. I. Neiman-zade, A. A. Shkalikov, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[9] A. A. Shkalikov, D.-G. Bak, Matem. zametki, 71:5 (2002), 643–651 | DOI | MR | Zbl

[10] V. I. Burenkov, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 12, Tr. MIAN SSSR, 181, Nauka, M., 1988, 27–39 | MR | Zbl

[11] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl