$C^*$-Simplicity of $n$-Periodic Products
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 643-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $C^*$-simplicity of $n$-periodic products is proved for a large class of groups. In particular, the $n$-periodic products of any finite or cyclic groups (including the free Burnside groups) are $C^*$-simple. Continuum-many nonisomorphic 3-generated nonsimple $C^*$-simple groups are constructed in each of which the identity $x^n=1$ holds, where $n\ge 1003$ is any odd number. The problem of the existence of $C^*$-simple groups without free subgroups of rank 2 was posed by de la Harpe in 2007.
Keywords: $n$-periodic product, nonsimple $C^*$-simple groups without free subgroups, trivial amenable radical.
Mots-clés : $C^*$-simple group
@article{MZM_2016_99_5_a0,
     author = {S. I. Adian and V. S. Atabekyan},
     title = {$C^*${-Simplicity} of $n${-Periodic} {Products}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--648},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - V. S. Atabekyan
TI  - $C^*$-Simplicity of $n$-Periodic Products
JO  - Matematičeskie zametki
PY  - 2016
SP  - 643
EP  - 648
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/
LA  - ru
ID  - MZM_2016_99_5_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A V. S. Atabekyan
%T $C^*$-Simplicity of $n$-Periodic Products
%J Matematičeskie zametki
%D 2016
%P 643-648
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/
%G ru
%F MZM_2016_99_5_a0
S. I. Adian; V. S. Atabekyan. $C^*$-Simplicity of $n$-Periodic Products. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 643-648. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/

[1] P. de la Harpe, “On simplicity of reduced $C^*$-algebras of groups”, Bull. Lond. Math. Soc., 39:1 (2007), 1–26 | DOI | MR | Zbl

[2] M. M. Day, “Amenable semigroups”, Illinois J. Math., 1 (1957), 509–544 | MR | Zbl

[3] E. Breuillard, M. Kalantar, M. Kennedy, N. Ozawa, $C*$-Simplicity and the Unique Trace Property for Discrete Groups, 2014, arXiv: 1410.2518

[4] A. Le Boudec, Discrete Groups That are Not $C*$-Simple, 2015, arXiv: 1507.03452

[5] R. T. Powers, “Simplicity of the $C^*$-algebra associated with the free group on two generators”, Duke Math. J., 42 (1975), 151–156 | DOI | MR | Zbl

[6] W. L. Paschke, N. Salinas, “$C^*$-algebras associated with free products of groups”, Pacific J. Math., 82:1 (1979), 211–221 | DOI | MR | Zbl

[7] M. R. Bridson, P. de la Harp, “Mapping class groups and outer automorphism groups of free groups are $C^*$-simple”, J. Funct. Anal., 212:1 (2004), 195–205 | DOI | MR | Zbl

[8] G. Arzhantseva, A. Minasyan, “Relatively hyperbolic groups are $C^*$-simple”, J. Funct. Anal., 243:1 (2007), 345–351 | DOI | MR | Zbl

[9] A. Yu. Olshanskii, D. V. Osin, “$C^\ast$-simple groups without free subgroups”, Groups Geom. Dyn., 8:3 (2014), 933–983 | DOI | MR | Zbl

[10] S. I. Adyan, “Sluchainye bluzhdaniya na svobodnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 46:6 (1982), 1139–1149 | MR | Zbl

[11] V. S. Atabekyan, “O podgruppakh svobodnykh bernsaidovykh grupp nechetnogo perioda $n\ge 1003$”, Izv. RAN. Ser. matem., 73:5 (2009), 3–36 | DOI | MR | Zbl

[12] S. I. Adyan, “Periodicheskie proizvedeniya grupp”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 142, 1976, 3–21 | MR | Zbl

[13] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[14] S. I. Adyan, “Novye otsenki nechetnykh periodov beskonechnykh bernsaidovykh grupp”, Izbrannye voprosy matematiki i mekhaniki, Sbornik statei. K 150-letiyu so dnya rozhdeniya akademika Vladimira Andreevicha Steklova, Tr. MIAN, 289, MAIK, M., 2015, 41–82 | DOI

[15] S. I. Adyan, V. S. Atabekyan, “Kharakteristicheskie svoistva i ravnomernaya neamenabelnost $n$-periodicheskikh proizvedenii grupp”, Izv. RAN. Ser. matem., 79:6 (2015), 3–17 | DOI | MR

[16] V. S. Atabekyan, “Ravnomernaya neamenabelnost podgrupp svobodnykh bernsaidovykh grupp nechetnogo perioda”, Matem. zametki, 85:4 (2009), 516–523 | DOI | MR | Zbl

[17] S. I. Adyan, “O prostote periodicheskikh proizvedenii grupp”, Dokl. AN SSSR, 241:4 (1978), 745–748 | MR | Zbl

[18] S. I. Adyan, I. G. Lysenok, “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 933–990 | MR | Zbl

[19] V. S. Atabekyan, “O periodicheskikh gruppakh nechetnogo perioda $n\ge1003$”, Matem. zametki, 82:4 (2007), 495–500 | DOI | MR | Zbl