Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_5_a0, author = {S. I. Adian and V. S. Atabekyan}, title = {$C^*${-Simplicity} of $n${-Periodic} {Products}}, journal = {Matemati\v{c}eskie zametki}, pages = {643--648}, publisher = {mathdoc}, volume = {99}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/} }
S. I. Adian; V. S. Atabekyan. $C^*$-Simplicity of $n$-Periodic Products. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 643-648. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/
[1] P. de la Harpe, “On simplicity of reduced $C^*$-algebras of groups”, Bull. Lond. Math. Soc., 39:1 (2007), 1–26 | DOI | MR | Zbl
[2] M. M. Day, “Amenable semigroups”, Illinois J. Math., 1 (1957), 509–544 | MR | Zbl
[3] E. Breuillard, M. Kalantar, M. Kennedy, N. Ozawa, $C*$-Simplicity and the Unique Trace Property for Discrete Groups, 2014, arXiv: 1410.2518
[4] A. Le Boudec, Discrete Groups That are Not $C*$-Simple, 2015, arXiv: 1507.03452
[5] R. T. Powers, “Simplicity of the $C^*$-algebra associated with the free group on two generators”, Duke Math. J., 42 (1975), 151–156 | DOI | MR | Zbl
[6] W. L. Paschke, N. Salinas, “$C^*$-algebras associated with free products of groups”, Pacific J. Math., 82:1 (1979), 211–221 | DOI | MR | Zbl
[7] M. R. Bridson, P. de la Harp, “Mapping class groups and outer automorphism groups of free groups are $C^*$-simple”, J. Funct. Anal., 212:1 (2004), 195–205 | DOI | MR | Zbl
[8] G. Arzhantseva, A. Minasyan, “Relatively hyperbolic groups are $C^*$-simple”, J. Funct. Anal., 243:1 (2007), 345–351 | DOI | MR | Zbl
[9] A. Yu. Olshanskii, D. V. Osin, “$C^\ast$-simple groups without free subgroups”, Groups Geom. Dyn., 8:3 (2014), 933–983 | DOI | MR | Zbl
[10] S. I. Adyan, “Sluchainye bluzhdaniya na svobodnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 46:6 (1982), 1139–1149 | MR | Zbl
[11] V. S. Atabekyan, “O podgruppakh svobodnykh bernsaidovykh grupp nechetnogo perioda $n\ge 1003$”, Izv. RAN. Ser. matem., 73:5 (2009), 3–36 | DOI | MR | Zbl
[12] S. I. Adyan, “Periodicheskie proizvedeniya grupp”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 142, 1976, 3–21 | MR | Zbl
[13] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl
[14] S. I. Adyan, “Novye otsenki nechetnykh periodov beskonechnykh bernsaidovykh grupp”, Izbrannye voprosy matematiki i mekhaniki, Sbornik statei. K 150-letiyu so dnya rozhdeniya akademika Vladimira Andreevicha Steklova, Tr. MIAN, 289, MAIK, M., 2015, 41–82 | DOI
[15] S. I. Adyan, V. S. Atabekyan, “Kharakteristicheskie svoistva i ravnomernaya neamenabelnost $n$-periodicheskikh proizvedenii grupp”, Izv. RAN. Ser. matem., 79:6 (2015), 3–17 | DOI | MR
[16] V. S. Atabekyan, “Ravnomernaya neamenabelnost podgrupp svobodnykh bernsaidovykh grupp nechetnogo perioda”, Matem. zametki, 85:4 (2009), 516–523 | DOI | MR | Zbl
[17] S. I. Adyan, “O prostote periodicheskikh proizvedenii grupp”, Dokl. AN SSSR, 241:4 (1978), 745–748 | MR | Zbl
[18] S. I. Adyan, I. G. Lysenok, “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 933–990 | MR | Zbl
[19] V. S. Atabekyan, “O periodicheskikh gruppakh nechetnogo perioda $n\ge1003$”, Matem. zametki, 82:4 (2007), 495–500 | DOI | MR | Zbl