$C^*$-Simplicity of $n$-Periodic Products
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 643-648

Voir la notice de l'article provenant de la source Math-Net.Ru

The $C^*$-simplicity of $n$-periodic products is proved for a large class of groups. In particular, the $n$-periodic products of any finite or cyclic groups (including the free Burnside groups) are $C^*$-simple. Continuum-many nonisomorphic 3-generated nonsimple $C^*$-simple groups are constructed in each of which the identity $x^n=1$ holds, where $n\ge 1003$ is any odd number. The problem of the existence of $C^*$-simple groups without free subgroups of rank 2 was posed by de la Harpe in 2007.
Keywords: $n$-periodic product, nonsimple $C^*$-simple groups without free subgroups, trivial amenable radical.
Mots-clés : $C^*$-simple group
@article{MZM_2016_99_5_a0,
     author = {S. I. Adian and V. S. Atabekyan},
     title = {$C^*${-Simplicity} of $n${-Periodic} {Products}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--648},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - V. S. Atabekyan
TI  - $C^*$-Simplicity of $n$-Periodic Products
JO  - Matematičeskie zametki
PY  - 2016
SP  - 643
EP  - 648
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/
LA  - ru
ID  - MZM_2016_99_5_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A V. S. Atabekyan
%T $C^*$-Simplicity of $n$-Periodic Products
%J Matematičeskie zametki
%D 2016
%P 643-648
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/
%G ru
%F MZM_2016_99_5_a0
S. I. Adian; V. S. Atabekyan. $C^*$-Simplicity of $n$-Periodic Products. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 643-648. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a0/