Approximation by Fourier Means and Generalized Moduli of Smoothness
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 574-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quality of approximation by Fourier means generated by an arbitrary generator with compact support in the spaces $L_p$, $1\le p\le\nobreak +\infty$, of $2\pi$-periodic $p$th integrable functions and in the space $C$ of continuous $2\pi$-periodic functions in terms of the generalized modulus of smoothness constructed from a $2\pi$-periodic generator is studied. Natural sufficient conditions on the generator of the approximation method and values of smoothness ensuring the equivalence of the corresponding approximation error and modulus are obtained. As applications, Fourier means generated by classical kernels as well as the classical moduli of smoothness are considered.
Keywords: approximation by Fourier means, approximation error, $2\pi$-periodic function, modulus of smoothness, the space $L_p$, $1\le p\le +\infty$, Fourier mean, Fejér mean, Bochner–Riesz mean, Rogozinskii mean
Mots-clés : Fourier transform, Valée-Poussin mean.
@article{MZM_2016_99_4_a9,
     author = {K. V. Runovskii},
     title = {Approximation by {Fourier} {Means} and {Generalized} {Moduli} of {Smoothness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {574--587},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a9/}
}
TY  - JOUR
AU  - K. V. Runovskii
TI  - Approximation by Fourier Means and Generalized Moduli of Smoothness
JO  - Matematičeskie zametki
PY  - 2016
SP  - 574
EP  - 587
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a9/
LA  - ru
ID  - MZM_2016_99_4_a9
ER  - 
%0 Journal Article
%A K. V. Runovskii
%T Approximation by Fourier Means and Generalized Moduli of Smoothness
%J Matematičeskie zametki
%D 2016
%P 574-587
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a9/
%G ru
%F MZM_2016_99_4_a9
K. V. Runovskii. Approximation by Fourier Means and Generalized Moduli of Smoothness. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 574-587. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a9/

[1] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[2] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation. Vol. 1. One-Dimensional Theory, Birkhäuser Verlag, Basel, 1971 | Zbl

[3] Z. Ditzian, “On Fejér and Bochner–Riesz means”, J. Fourier Anal. Appl., 11:4 (2005), 489–496 | DOI | MR | Zbl

[4] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 | MR | Zbl

[5] K. Runovski, H.-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint, Friedrich-Schiller-Universität Jena, Jena, 2011

[6] A. I. Kozko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Matem. sb., 195:8 (2004), 3–46 | DOI | MR | Zbl

[7] K. V. Runovskii, “Pryamaya teorema teorii priblizhenii dlya obschego modulya gladkosti”, Matem. zametki, 95:6 (2014), 899–910 | DOI

[8] K. Runovski, H.-J. Schmeisser, “General moduli of smoothness and approximation by families of linear polynomial operators”, New Perspectives on Approximation and Sampling Theory, Appl. Numer. Harmon. Anal., Birkhäuser, Cham, 2014, 269–298 | MR | Zbl

[9] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl

[10] K. V. Runovskii, Priblizhenie semeistvami lineinykh polinomialnykh operatorov, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 2010

[11] V. Rukasov, K. Runovski, H.-J. Schmeisser, “Approximation by families of linear polynomial operators and smoothness properties of the functions”, Math. Nachr., 284:11-12 (2011), 1523–1537 | DOI | MR | Zbl

[12] K. Runovski, H.-J. Schmeisser, “On families of linear polynomial operators generated by Riesz kernels”, Eurasian Math. J., 1:4 (2010), 124–139 | MR | Zbl