The Goursat Problem for the Fractional Telegraph Equation with Caputo Derivatives
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 559-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Goursat problem for the fractional telegraph equation with Caputo derivatives is studied. An existence and uniqueness theorem for the solution of the problem is proved.
Keywords: fractional telegraph equation, Caputo derivative, Riemann–Liouville fractional integro-differential operator, multi-index Mittag-Leffler function.
Mots-clés : Goursat problem
@article{MZM_2016_99_4_a7,
     author = {R. A. Pshibikhova},
     title = {The {Goursat} {Problem} for the {Fractional} {Telegraph} {Equation} with {Caputo} {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {559--563},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a7/}
}
TY  - JOUR
AU  - R. A. Pshibikhova
TI  - The Goursat Problem for the Fractional Telegraph Equation with Caputo Derivatives
JO  - Matematičeskie zametki
PY  - 2016
SP  - 559
EP  - 563
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a7/
LA  - ru
ID  - MZM_2016_99_4_a7
ER  - 
%0 Journal Article
%A R. A. Pshibikhova
%T The Goursat Problem for the Fractional Telegraph Equation with Caputo Derivatives
%J Matematičeskie zametki
%D 2016
%P 559-563
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a7/
%G ru
%F MZM_2016_99_4_a7
R. A. Pshibikhova. The Goursat Problem for the Fractional Telegraph Equation with Caputo Derivatives. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 559-563. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a7/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[2] R. A. Pshibikhova, “Analog zadachi Gursa dlya obobschennogo telegrafnogo uravneniya drobnogo poryadka”, Differents. uravneniya, 50:6 (2014), 839–843 | DOI | Zbl

[3] A. S. Erëmin, “Tri zadachi dlya odnogo uravneniya v chastnykh drobnykh proizvodnykh”, Trudy Vserossiiskoi nauchnoi konferentsii, Differentsialnye uravneniya i kraevye zadachi (26–28 maya 2004 g.), Chast 3, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2004, 94–98

[4] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[6] V. I. Smirnov, Kurs vysshei matematiki, T. 5, Fizmatgiz, M., 1959 | MR

[7] V. S. Kiryakova, “The multi-index Mittag-Leffler functions as generators of fractional calculus operators and Laplace transforms”, International Conference on Mathematics and Its Applications (ICMA 2004), Extended Abstracts, Kuwait Univ., 169–175