The Goursat Problem for the Fractional Telegraph Equation with Caputo Derivatives
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 559-563 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Goursat problem for the fractional telegraph equation with Caputo derivatives is studied. An existence and uniqueness theorem for the solution of the problem is proved.
Keywords: fractional telegraph equation, Caputo derivative, Riemann–Liouville fractional integro-differential operator, multi-index Mittag-Leffler function.
Mots-clés : Goursat problem
@article{MZM_2016_99_4_a7,
     author = {R. A. Pshibikhova},
     title = {The {Goursat} {Problem} for the {Fractional} {Telegraph} {Equation} with {Caputo} {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {559--563},
     year = {2016},
     volume = {99},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a7/}
}
TY  - JOUR
AU  - R. A. Pshibikhova
TI  - The Goursat Problem for the Fractional Telegraph Equation with Caputo Derivatives
JO  - Matematičeskie zametki
PY  - 2016
SP  - 559
EP  - 563
VL  - 99
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a7/
LA  - ru
ID  - MZM_2016_99_4_a7
ER  - 
%0 Journal Article
%A R. A. Pshibikhova
%T The Goursat Problem for the Fractional Telegraph Equation with Caputo Derivatives
%J Matematičeskie zametki
%D 2016
%P 559-563
%V 99
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a7/
%G ru
%F MZM_2016_99_4_a7
R. A. Pshibikhova. The Goursat Problem for the Fractional Telegraph Equation with Caputo Derivatives. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 559-563. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a7/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[2] R. A. Pshibikhova, “Analog zadachi Gursa dlya obobschennogo telegrafnogo uravneniya drobnogo poryadka”, Differents. uravneniya, 50:6 (2014), 839–843 | DOI | Zbl

[3] A. S. Erëmin, “Tri zadachi dlya odnogo uravneniya v chastnykh drobnykh proizvodnykh”, Trudy Vserossiiskoi nauchnoi konferentsii, Differentsialnye uravneniya i kraevye zadachi (26–28 maya 2004 g.), Chast 3, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2004, 94–98

[4] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[6] V. I. Smirnov, Kurs vysshei matematiki, T. 5, Fizmatgiz, M., 1959 | MR

[7] V. S. Kiryakova, “The multi-index Mittag-Leffler functions as generators of fractional calculus operators and Laplace transforms”, International Conference on Mathematics and Its Applications (ICMA 2004), Extended Abstracts, Kuwait Univ., 169–175