On the Complexity of the Family of Convex Sets in $\mathbb R^{d}$
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 537-549
Cet article a éte moissonné depuis la source Math-Net.Ru
Estimates of quantities characterizing the complexity of the family of convex subsets of the $d$-dimensional cube $[1,n]^d$ as $n\to \infty$ are given. The geometric properties of spaces with norm generated by the generalized majorant of partial sums are studied.
Keywords:
complexity of a family of subsets of a $d$-cube, generalized majorant of partial sums, convex set, Khinchine's inequality.
Mots-clés : simplex
Mots-clés : simplex
@article{MZM_2016_99_4_a5,
author = {V. V. Pernay},
title = {On the {Complexity} of the {Family} of {Convex} {Sets} in $\mathbb R^{d}$},
journal = {Matemati\v{c}eskie zametki},
pages = {537--549},
year = {2016},
volume = {99},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a5/}
}
V. V. Pernay. On the Complexity of the Family of Convex Sets in $\mathbb R^{d}$. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 537-549. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a5/
[1] B. S. Kashin, “Analog teoremy Menshova “ob ispravlenii” dlya diskretnykh ortonormirovannykh sistem”, Matem. zametki, 46:6 (1989), 67–74 | MR | Zbl
[2] B. S. Kashin, “O vozmozhnosti obobscheniya teorem “ob ispravlenii””, Matem. zametki, 62:6 (1997), 937–939 | DOI | MR | Zbl
[3] V. V. Pernai, “Prostranstva, porozhdennye obobschennoi mazhorantoi chastnykh summ”, Matem. zametki, 96:1 (2014), 153–156 | DOI | Zbl
[4] G. E. Andrews, “A lower bound for the volume of strictly convex bodies with many boundary lattice points”, Trans. Amer. Math. Soc., 106 (1963), 270–279 | DOI | MR
[5] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl