Metrically and Topologically Projective Ideals of Banach Algebras
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 526-536 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, necessary conditions for the metric and topological projectivity of closed ideals of Banach algebras are given. In the case of commutative Banach algebras, a criterion for the metric and topological projectivity of ideals admitting a bounded approximate identity is obtained. The main result of the paper is as follows: a closed ideal of an arbitrary $C^*$-algebra is metrically or topologically projective if and only if it admits a self-adjoint right identity.
Keywords: Banach algebra, commutative Banach algebra, metrically projective ideal, topologically projective ideal, self-adjoint right identity.
@article{MZM_2016_99_4_a4,
     author = {N. T. Nemesh},
     title = {Metrically and {Topologically} {Projective} {Ideals} of {Banach} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {526--536},
     year = {2016},
     volume = {99},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a4/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - Metrically and Topologically Projective Ideals of Banach Algebras
JO  - Matematičeskie zametki
PY  - 2016
SP  - 526
EP  - 536
VL  - 99
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a4/
LA  - ru
ID  - MZM_2016_99_4_a4
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T Metrically and Topologically Projective Ideals of Banach Algebras
%J Matematičeskie zametki
%D 2016
%P 526-536
%V 99
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a4/
%G ru
%F MZM_2016_99_4_a4
N. T. Nemesh. Metrically and Topologically Projective Ideals of Banach Algebras. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 526-536. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a4/

[1] A. Ya. Khelemskii, “O gomologicheskoi razmernosti normirovannykh modulei nad banakhovymi algebrami”, Matem. sb., 81:3 (1970), 430–444 | MR | Zbl

[2] G. Wittstock, “Injectivity of the module tensor product of semi-Ruan modules”, J. Operator Theory, 65:1 (2011), 87–113 | MR | Zbl

[3] E. G. Effros, N. Ozawa, Z.-J. Ruan, “On injectivity and nuclearity for operator spaces”, Duke Math. J., 110:3 (2001), 489–521 | DOI | MR | Zbl

[4] B. Forrest, “Projective operator spaces, almost periodicity and completely complemented ideals in the Fourier algebra”, Rocky Mountain J. Math., 41:1 (2011), 155–176 | DOI | MR | Zbl

[5] A. Ya. Khelemskii, “Metricheskaya svoboda i proektivnost dlya klassicheskikh i kvantovykh normirovannykh modulei”, Matem. sb., 204:7 (2013), 127–158 | DOI | MR | Zbl

[6] A. W. M. Graven, “Injective and projective Banach modules”, Indag. Math., 82:3 (1979), 253–272 | DOI | MR | Zbl

[7] S. M. Shteiner, “Topologicheskaya svoboda dlya klassicheskikh i kvantovykh normirovannykh modulei”, Vestn. SamGU. Estestvennonauchn. ser., 2013, no. 9/1 (110), 49–57 | Zbl

[8] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo Mosk. un-ta, M., 1986 | MR | Zbl

[9] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. (N.S.), 24, Clarendon Press, New York, 2000 | MR | Zbl

[10] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR | Zbl

[11] D. P. Blecher, T. Kania, “Finite generation in $C^*$-algebras and Hilbert $C^*$-modules”, Studia Math., 224:2 (2014), 143–151 | DOI | MR | Zbl

[12] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2015

[13] D. Cushing, Z. A. Lykova, “Projectivity of Banach and $C^*$-algebras of continuous fields”, Q. J. Math., 64:2 (2013), 341–371 | DOI | MR | Zbl