Universal Zero-One $k$-Law
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 511-525
Voir la notice de l'article provenant de la source Math-Net.Ru
The limit probabilities of first-order properties of a random graph in the Erdős–Rényi model $G(n, n^{-\alpha})$, $\alpha\in (0, 1)$, are studied. For any positive integer $k \ge 4$ and any rational number $t/s \in (0, 1)$, an interval with right endpoint $t/s$ is found in which the zero-one $k$-law holds (the zero-one $k$-law describes the behavior of the probabilities of first-order properties expressed by formulas of quantifier depth at most $k$). Moreover, it is proved that, for rational numbers $t/s$ with numerator not exceeding 2, the logarithm of the length of this interval is of the same order of smallness (as $n \to\infty$) as that of the length of the maximal interval with right endpoint $t/s$ in which the zero-one $k$-law holds.
Keywords:
zero-one $k$-law, Erdős–Rényi random graph, first-order property.
@article{MZM_2016_99_4_a3,
author = {M. E. Zhukovskii and A. D. Matushkin},
title = {Universal {Zero-One} $k${-Law}},
journal = {Matemati\v{c}eskie zametki},
pages = {511--525},
publisher = {mathdoc},
volume = {99},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a3/}
}
M. E. Zhukovskii; A. D. Matushkin. Universal Zero-One $k$-Law. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 511-525. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a3/