Universal Zero-One $k$-Law
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 511-525

Voir la notice de l'article provenant de la source Math-Net.Ru

The limit probabilities of first-order properties of a random graph in the Erdős–Rényi model $G(n, n^{-\alpha})$, $\alpha\in (0, 1)$, are studied. For any positive integer $k \ge 4$ and any rational number $t/s \in (0, 1)$, an interval with right endpoint $t/s$ is found in which the zero-one $k$-law holds (the zero-one $k$-law describes the behavior of the probabilities of first-order properties expressed by formulas of quantifier depth at most $k$). Moreover, it is proved that, for rational numbers $t/s$ with numerator not exceeding 2, the logarithm of the length of this interval is of the same order of smallness (as $n \to\infty$) as that of the length of the maximal interval with right endpoint $t/s$ in which the zero-one $k$-law holds.
Keywords: zero-one $k$-law, Erdős–Rényi random graph, first-order property.
@article{MZM_2016_99_4_a3,
     author = {M. E. Zhukovskii and A. D. Matushkin},
     title = {Universal {Zero-One} $k${-Law}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--525},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a3/}
}
TY  - JOUR
AU  - M. E. Zhukovskii
AU  - A. D. Matushkin
TI  - Universal Zero-One $k$-Law
JO  - Matematičeskie zametki
PY  - 2016
SP  - 511
EP  - 525
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a3/
LA  - ru
ID  - MZM_2016_99_4_a3
ER  - 
%0 Journal Article
%A M. E. Zhukovskii
%A A. D. Matushkin
%T Universal Zero-One $k$-Law
%J Matematičeskie zametki
%D 2016
%P 511-525
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a3/
%G ru
%F MZM_2016_99_4_a3
M. E. Zhukovskii; A. D. Matushkin. Universal Zero-One $k$-Law. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 511-525. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a3/