Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 626-630
Voir la notice de l'article provenant de la source Math-Net.Ru
Keywords:
helicity, incompressible flow, exact divergence-free vector field, topological invariants of magnetic fields.
Mots-clés : flux
Mots-clés : flux
@article{MZM_2016_99_4_a15,
author = {E. A. Kudryavtseva},
title = {Helicity is the {Only} {Invariant} of {Incompressible} {Flows} whose {Derivative} is {Continuous} in the $C^1$ {Topology}},
journal = {Matemati\v{c}eskie zametki},
pages = {626--630},
publisher = {mathdoc},
volume = {99},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/}
}
TY - JOUR AU - E. A. Kudryavtseva TI - Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology JO - Matematičeskie zametki PY - 2016 SP - 626 EP - 630 VL - 99 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/ LA - ru ID - MZM_2016_99_4_a15 ER -
E. A. Kudryavtseva. Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 626-630. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/