Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_4_a15, author = {E. A. Kudryavtseva}, title = {Helicity is the {Only} {Invariant} of {Incompressible} {Flows} whose {Derivative} is {Continuous} in the $C^1$ {Topology}}, journal = {Matemati\v{c}eskie zametki}, pages = {626--630}, publisher = {mathdoc}, volume = {99}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/} }
TY - JOUR AU - E. A. Kudryavtseva TI - Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology JO - Matematičeskie zametki PY - 2016 SP - 626 EP - 630 VL - 99 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/ LA - ru ID - MZM_2016_99_4_a15 ER -
E. A. Kudryavtseva. Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 626-630. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/
[1] G. R. Jensen, Indiana Univ. Math. J., 20:12 (1971), 1125–1143 | DOI | MR | Zbl
[2] A. Banyaga, Comment. Math. Helv., 53:2 (1978), 174–227 | MR | Zbl
[3] E. Calabi, Problems in Analysis, Princeton Univ. Press, Princeton, NJ, 1970, 1–26 | MR | Zbl
[4] E. A. Kudryavtseva, Matem. zametki, 95:6 (2014), 951–954 | DOI | MR | Zbl
[5] E. Kudryavtseva, Proc. Int. Conf. “Knots and links in fluid flows: from helicity to knot energy”, IUM Publications, Moscow, 2015, 9–10
[6] D. Serre, C. R. Acad. Sci. Paris Sér. A, 289:4 (1979), 267–270 ; Phys. D, 13:1-2 (1984), 105–136 | MR | Zbl | DOI | MR | Zbl
[7] M. Bessa, C. R. Math. Acad. Sci. Paris, 346:21-22 (2008), 1169–1174 | DOI | MR | Zbl
[8] A. G. Medvedev, Matem. zametki, 95:2 (2014), 227–233 | DOI | MR | Zbl
[9] C. Bonatti, S. Crovisier, Invent. Math., 158:1 (2004), 33–104 | MR | Zbl