Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 626-630.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: helicity, incompressible flow, exact divergence-free vector field, topological invariants of magnetic fields.
Mots-clés : flux
@article{MZM_2016_99_4_a15,
     author = {E. A. Kudryavtseva},
     title = {Helicity is the {Only} {Invariant} of {Incompressible} {Flows} whose {Derivative} is {Continuous} in the $C^1$ {Topology}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {626--630},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology
JO  - Matematičeskie zametki
PY  - 2016
SP  - 626
EP  - 630
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/
LA  - ru
ID  - MZM_2016_99_4_a15
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology
%J Matematičeskie zametki
%D 2016
%P 626-630
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/
%G ru
%F MZM_2016_99_4_a15
E. A. Kudryavtseva. Helicity is the Only Invariant of Incompressible Flows whose Derivative is Continuous in the $C^1$ Topology. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 626-630. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a15/

[1] G. R. Jensen, Indiana Univ. Math. J., 20:12 (1971), 1125–1143 | DOI | MR | Zbl

[2] A. Banyaga, Comment. Math. Helv., 53:2 (1978), 174–227 | MR | Zbl

[3] E. Calabi, Problems in Analysis, Princeton Univ. Press, Princeton, NJ, 1970, 1–26 | MR | Zbl

[4] E. A. Kudryavtseva, Matem. zametki, 95:6 (2014), 951–954 | DOI | MR | Zbl

[5] E. Kudryavtseva, Proc. Int. Conf. “Knots and links in fluid flows: from helicity to knot energy”, IUM Publications, Moscow, 2015, 9–10

[6] D. Serre, C. R. Acad. Sci. Paris Sér. A, 289:4 (1979), 267–270 ; Phys. D, 13:1-2 (1984), 105–136 | MR | Zbl | DOI | MR | Zbl

[7] M. Bessa, C. R. Math. Acad. Sci. Paris, 346:21-22 (2008), 1169–1174 | DOI | MR | Zbl

[8] A. G. Medvedev, Matem. zametki, 95:2 (2014), 227–233 | DOI | MR | Zbl

[9] C. Bonatti, S. Crovisier, Invent. Math., 158:1 (2004), 33–104 | MR | Zbl