The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 588-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary subharmonic function not identically equal to $-\infty$ in a domain $D$ of the complex plane $\mathbb C$, we prove the existence of a nonzero holomorphic function in $D$ the logarithm of whose modulus is majorized by locally averaging a subharmonic function with logarithmic additions or even without them in the case $D=\mathbb C$.
Keywords: subharmonic function, minorant for a subharmonic function, holomorphic function, Riesz measure, logarithmic potential.
Mots-clés : Poisson–Jensen formula
@article{MZM_2016_99_4_a10,
     author = {B. N. Khabibullin and T. Yu. Baiguskarov},
     title = {The {Logarithm} of the {Modulus} of a {Holomorphic} {Function} as a {Minorant} for a {Subharmonic} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {588--602},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a10/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - T. Yu. Baiguskarov
TI  - The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function
JO  - Matematičeskie zametki
PY  - 2016
SP  - 588
EP  - 602
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a10/
LA  - ru
ID  - MZM_2016_99_4_a10
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A T. Yu. Baiguskarov
%T The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function
%J Matematičeskie zametki
%D 2016
%P 588-602
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a10/
%G ru
%F MZM_2016_99_4_a10
B. N. Khabibullin; T. Yu. Baiguskarov. The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 588-602. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a10/

[1] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980 | MR | Zbl

[2] Th. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[3] L. Hörmander, Notions of Convexity, Progr. Math., 127, Birkhäser Boston, Boston, MA, 1994 | MR | Zbl

[4] E. Bombieri, “Algebraic values of meromorphic maps”, Invent. Math., 10:4 (1970), 267–287 | DOI | MR | Zbl

[5] P. Lelon, L. Gruman, Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[6] B. N. Khabibullin, “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Ser. matem., 65:5 (2001), 167–190 | DOI | MR | Zbl

[7] O. V. Epifanov, “Razreshimost uravneniya Koshi–Rimana s ogranicheniyami rosta funktsii i vesovaya approksimatsiya analiticheskikh funktsii”, Izv. vuzov. Matem., 1990, no. 2, 49–52 | MR | Zbl

[8] O. V. Epifanov, “O razreshimosti neodnorodnogo uravneniya Koshi–Rimana v klassakh funktsii, ogranichennykh s vesom i sistemoi vesov”, Matem. zametki, 51:1 (1992), 83–92 | MR | Zbl

[9] B. N. Khabibullin, F. B. Khabibullin, L. Yu. Cherednikova, “Podposledovatelnosti nulei dlya klassov golomorfnykh funktsii, ikh ustoichivost i entropiya lineinoi svyaznosti. I”, Algebra i analiz, 20:1 (2008), 146–189 | MR | Zbl

[10] B. N. Khabibullin, “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1101–1123 | MR | Zbl

[11] R. S. Yulmukhametov, “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[12] M. Christ, “On the $\overline{\partial}$ equation in weighted $L^2$ norms in $\mathbb C^1$”, J. Geom. Anal., 1:3 (1991), 193–230 | DOI | MR | Zbl

[13] B. Berndtsson, J. Ortega Cerdà, “On interpolation and sampling in Hilbert spaces of analytic functions”, J. Reine Angew. Math., 464 (1995), 109–128 | MR | Zbl

[14] K. Seip, “On Korenblum's density condition for the zero sequences of $A^{-\alpha}$”, J. Anal. Math., 67 (1995), 307–322 | DOI | MR | Zbl

[15] B. Berndtsson, “Uniform estimates with weights for the $\overline{\partial}$-equation”, J. Geom. Anal., 7:2 (1997), 195–215 | DOI | MR | Zbl

[16] Yu. Lyubarskii, Eu. Malinnikova, “On approximation of subharmonic functions”, J. Anal. Math., 83 (2001), 121–149 | DOI | MR | Zbl

[17] J. Ortega-Cerdà, “Multipliers and weighted $\overline{\partial}$-estimates”, Rev. Mat. Iberoamericana, 18:2 (2002), 355–377 | DOI | MR | Zbl

[18] D. H. Luecking, “Interpolation Schemes in Weighted Bergman Spaces”, 2014, arXiv: math.CV/1412.0716

[19] B. N. Khabibullin, “Posledovatelnosti nulei golomorfnykh funktsii, predstavlenie meromorfnykh funktsii i garmonicheskie minoranty”, Matem. sb., 198:2 (2007), 121–160 | DOI | MR | Zbl