Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_4_a10, author = {B. N. Khabibullin and T. Yu. Baiguskarov}, title = {The {Logarithm} of the {Modulus} of a {Holomorphic} {Function} as a {Minorant} for a {Subharmonic} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {588--602}, publisher = {mathdoc}, volume = {99}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a10/} }
TY - JOUR AU - B. N. Khabibullin AU - T. Yu. Baiguskarov TI - The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function JO - Matematičeskie zametki PY - 2016 SP - 588 EP - 602 VL - 99 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a10/ LA - ru ID - MZM_2016_99_4_a10 ER -
%0 Journal Article %A B. N. Khabibullin %A T. Yu. Baiguskarov %T The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function %J Matematičeskie zametki %D 2016 %P 588-602 %V 99 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a10/ %G ru %F MZM_2016_99_4_a10
B. N. Khabibullin; T. Yu. Baiguskarov. The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 588-602. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a10/
[1] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980 | MR | Zbl
[2] Th. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[3] L. Hörmander, Notions of Convexity, Progr. Math., 127, Birkhäser Boston, Boston, MA, 1994 | MR | Zbl
[4] E. Bombieri, “Algebraic values of meromorphic maps”, Invent. Math., 10:4 (1970), 267–287 | DOI | MR | Zbl
[5] P. Lelon, L. Gruman, Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl
[6] B. N. Khabibullin, “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Ser. matem., 65:5 (2001), 167–190 | DOI | MR | Zbl
[7] O. V. Epifanov, “Razreshimost uravneniya Koshi–Rimana s ogranicheniyami rosta funktsii i vesovaya approksimatsiya analiticheskikh funktsii”, Izv. vuzov. Matem., 1990, no. 2, 49–52 | MR | Zbl
[8] O. V. Epifanov, “O razreshimosti neodnorodnogo uravneniya Koshi–Rimana v klassakh funktsii, ogranichennykh s vesom i sistemoi vesov”, Matem. zametki, 51:1 (1992), 83–92 | MR | Zbl
[9] B. N. Khabibullin, F. B. Khabibullin, L. Yu. Cherednikova, “Podposledovatelnosti nulei dlya klassov golomorfnykh funktsii, ikh ustoichivost i entropiya lineinoi svyaznosti. I”, Algebra i analiz, 20:1 (2008), 146–189 | MR | Zbl
[10] B. N. Khabibullin, “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1101–1123 | MR | Zbl
[11] R. S. Yulmukhametov, “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl
[12] M. Christ, “On the $\overline{\partial}$ equation in weighted $L^2$ norms in $\mathbb C^1$”, J. Geom. Anal., 1:3 (1991), 193–230 | DOI | MR | Zbl
[13] B. Berndtsson, J. Ortega Cerdà, “On interpolation and sampling in Hilbert spaces of analytic functions”, J. Reine Angew. Math., 464 (1995), 109–128 | MR | Zbl
[14] K. Seip, “On Korenblum's density condition for the zero sequences of $A^{-\alpha}$”, J. Anal. Math., 67 (1995), 307–322 | DOI | MR | Zbl
[15] B. Berndtsson, “Uniform estimates with weights for the $\overline{\partial}$-equation”, J. Geom. Anal., 7:2 (1997), 195–215 | DOI | MR | Zbl
[16] Yu. Lyubarskii, Eu. Malinnikova, “On approximation of subharmonic functions”, J. Anal. Math., 83 (2001), 121–149 | DOI | MR | Zbl
[17] J. Ortega-Cerdà, “Multipliers and weighted $\overline{\partial}$-estimates”, Rev. Mat. Iberoamericana, 18:2 (2002), 355–377 | DOI | MR | Zbl
[18] D. H. Luecking, “Interpolation Schemes in Weighted Bergman Spaces”, 2014, arXiv: math.CV/1412.0716
[19] B. N. Khabibullin, “Posledovatelnosti nulei golomorfnykh funktsii, predstavlenie meromorfnykh funktsii i garmonicheskie minoranty”, Matem. sb., 198:2 (2007), 121–160 | DOI | MR | Zbl