On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 489-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bounds for the multiplicity of the eigenvalues of the Sturm–Liouville problem on a graph, which are valid for a wide class of consistency (transmission) conditions at the vertices of the graph, are given. The multiplicities are estimated using the topological characteristics of the graph. In the framework of the notions that we use, the bounds turn out to be exact.
Keywords: geometric graph, ordinary differential equation on a graph, multiplicity of eigenvalues.
Mots-clés : Sturm–Liouville problem on a graph, transmission conditions
@article{MZM_2016_99_4_a1,
     author = {A. T. Diab and B. K. Kaldybekova and O. M. Penkin},
     title = {On the {Multiplicity} of {Eigenvalues} of the {Sturm--Liouville} {Problem} on {Graphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {489--501},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a1/}
}
TY  - JOUR
AU  - A. T. Diab
AU  - B. K. Kaldybekova
AU  - O. M. Penkin
TI  - On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs
JO  - Matematičeskie zametki
PY  - 2016
SP  - 489
EP  - 501
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a1/
LA  - ru
ID  - MZM_2016_99_4_a1
ER  - 
%0 Journal Article
%A A. T. Diab
%A B. K. Kaldybekova
%A O. M. Penkin
%T On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs
%J Matematičeskie zametki
%D 2016
%P 489-501
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a1/
%G ru
%F MZM_2016_99_4_a1
A. T. Diab; B. K. Kaldybekova; O. M. Penkin. On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 489-501. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a1/

[1] M. G. Zavgorodnii, O. M. Penkin, “Ob otsenkakh kratnostei sobstvennykh znachenii”, Sovremennye metody v teorii kraevykh zadach, Tezisy dokladov, Voronezh, 1992, 46

[2] J. A. Lubary, “On the geometric and algebraic multiplicities for eigenvalue problems on graphs”, Lecture Notes in Pure and Appl. Math., 219, Marcel Dekker, New York, 2001, 135–146 | MR | Zbl

[3] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005 | MR

[4] P. Kuchment, “Quantum graphs. I. Some basic structures”, Waves in Random Media, 14:1 (2004), S107–S128 | MR | Zbl

[5] P. Kuchment, “Quantum graphs. II. Some spectral properties of quantum and combinatouial graphs”, J. Phys. A, 38:22 (2005), 4887–4900 | DOI | MR | Zbl

[6] U. Tatt, Teoriya grafov, Mir, M., 1988 | MR