On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 489-501
Voir la notice de l'article provenant de la source Math-Net.Ru
Bounds for the multiplicity of the eigenvalues of the Sturm–Liouville problem on a graph, which are valid for a wide class of consistency (transmission) conditions at the vertices of the graph, are given. The multiplicities are estimated using the topological characteristics of the graph. In the framework of the notions that we use, the bounds turn out to be exact.
Keywords:
geometric graph, ordinary differential equation on a graph, multiplicity of eigenvalues.
Mots-clés : Sturm–Liouville problem on a graph, transmission conditions
Mots-clés : Sturm–Liouville problem on a graph, transmission conditions
@article{MZM_2016_99_4_a1,
author = {A. T. Diab and B. K. Kaldybekova and O. M. Penkin},
title = {On the {Multiplicity} of {Eigenvalues} of the {Sturm--Liouville} {Problem} on {Graphs}},
journal = {Matemati\v{c}eskie zametki},
pages = {489--501},
publisher = {mathdoc},
volume = {99},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a1/}
}
TY - JOUR AU - A. T. Diab AU - B. K. Kaldybekova AU - O. M. Penkin TI - On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs JO - Matematičeskie zametki PY - 2016 SP - 489 EP - 501 VL - 99 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a1/ LA - ru ID - MZM_2016_99_4_a1 ER -
A. T. Diab; B. K. Kaldybekova; O. M. Penkin. On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 489-501. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a1/