Inequality for a Trace on a Unital $C^*$-Algebra
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 483-488.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new inequality for a trace on a unital $C^*$-algebra is established. It is shown that the inequality obtained characterizes the traces in the class of all positive functionals on a unital $C^*$-algebra. A new criterion for the commutativity of unital $C^*$-algebras is proved.
Keywords: unital $C^*$-algebra, positive functional, trace on a $C^*$-algebra.
@article{MZM_2016_99_4_a0,
     author = {A. M. Bikchentaev},
     title = {Inequality for a {Trace} on a {Unital} $C^*${-Algebra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--488},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a0/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Inequality for a Trace on a Unital $C^*$-Algebra
JO  - Matematičeskie zametki
PY  - 2016
SP  - 483
EP  - 488
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a0/
LA  - ru
ID  - MZM_2016_99_4_a0
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Inequality for a Trace on a Unital $C^*$-Algebra
%J Matematičeskie zametki
%D 2016
%P 483-488
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a0/
%G ru
%F MZM_2016_99_4_a0
A. M. Bikchentaev. Inequality for a Trace on a Unital $C^*$-Algebra. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 483-488. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a0/

[1] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl

[2] M. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, Berlin, 1979 | MR | Zbl

[3] L. T. Gardner, “An inequality characterizes the trace”, Canad. J. Math., 31:6 (1979), 1322–1328 | DOI | MR | Zbl

[4] A. M. Bikchentaev, “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | DOI | MR | Zbl

[5] A. I. Stolyarov, O. E. Tikhonov, A. N. Sherstnev, “Kharakterizatsiya normalnykh sledov na algebrakh fon Neimana neravenstvami dlya modulya”, Matem. zametki, 72:3 (2002), 448–454 | DOI | MR | Zbl

[6] A. M. Bikchentaev, O. E. Tikhonov, “Characterization of the trace by Young's inequality”, JIPAM. J. Inequal. Pure Appl. Math., 6:2 (2005), Article 49 | MR | Zbl

[7] O. E. Tikhonov, “Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals”, Positivity, 9:2 (2005), 259–264 | DOI | MR | Zbl

[8] A. M. Bikchentaev, O. E. Tikhonov, “Characterization of the trace by monotonicity inequalities”, Linear Algebra Appl., 422:1 (2007), 274–278 | DOI | MR | Zbl

[9] A. M. Bikchentaev, “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana”, Sib. matem. zhurn., 51:6 (2010), 1228–1236 | MR | Zbl

[10] A. M. Bikchentaev, “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana. II”, Matem. zametki, 89:4 (2011), 483–494 | DOI | MR | Zbl

[11] A. M. Bikchentaev, “The Peierls–Bogoliubov inequality in $C^*$-algebras and characterization of tracial functionals”, Lobachevskii J. Math., 32:3 (2011), 175–179 | DOI | MR | Zbl

[12] A. M. Bikchentaev, “Perestanovochnost operatorov i kharakterizatsiya sleda na $C^*$-algebrakh”, Dokl. RAN, 448:5 (2013), 506–509 | DOI | MR | Zbl

[13] A. M. Bikchentaev, “Commutation of projections and characterization of traces on von Neumann algebras. III”, Internat. J. Theoret. Phys., 54:12 (2015), 4482–4493 | DOI | MR

[14] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary Theory, Pure Appl. Math., 100, Academic Press, New York, 1983 | MR | Zbl