Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_3_a9, author = {L. M. Samoilov}, title = {On the {Primality} {Property} of {Central} {Polynomials} of {Prime} {Varieties} of {Associative} {Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {404--408}, publisher = {mathdoc}, volume = {99}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/} }
TY - JOUR AU - L. M. Samoilov TI - On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras JO - Matematičeskie zametki PY - 2016 SP - 404 EP - 408 VL - 99 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/ LA - ru ID - MZM_2016_99_3_a9 ER -
L. M. Samoilov. On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 404-408. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/
[1] A. Regev, “A primeness property for central polynomials”, Pacific J. Math., 83:1 (1979), 269–271 | DOI | MR | Zbl
[2] Diogo Diniz Pereira da Silva e Silva, “A primeness property for central polynomials of verbally prime P.I. algebras”, Linear and Multilinear Algebra, 63:11 (2015), 2151–2158 | DOI | MR | Zbl
[3] A. R. Kemer, “Mnogoobraziya i $Z_2$-graduirovannye algebry”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 1042–1059 | MR | Zbl
[4] Yu. P. Razmyslov, “Tozhdestva so sledom i tsentralnye polinomy v matrichnykh superalgebrakh $M_{n,k}$”, Matem. sb., 128:2 (1985), 194–215 | MR | Zbl
[5] S. V. Okhitin, “Ob ustoichivykh $T$-idealakh i tsentralnykh polinomakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 3, 85–88 | MR | Zbl
[6] A. Ya. Belov, “Assotsiativnykh $PI$-algebr, sovpadayuschikh so svoim kommutantom, ne suschestvuet”, Sib. matem. zhurn., 44:6 (2003), 1239–1254 | MR | Zbl
[7] V. N. Latyshev, “O nekotorykh mnogoobraziyakh assotsiativnykh algebr”, Izv. AN SSSR. Ser. matem., 37:5 (1973), 1010–1037 | MR | Zbl
[8] V. N. Latyshev, “Ustoichivye idealy tozhdestv”, Algebra i logika, 20:5 (1981), 563–570 | MR