Mots-clés : prime central polynomial
@article{MZM_2016_99_3_a9,
author = {L. M. Samoilov},
title = {On the {Primality} {Property} of {Central} {Polynomials} of {Prime} {Varieties} of {Associative} {Algebras}},
journal = {Matemati\v{c}eskie zametki},
pages = {404--408},
year = {2016},
volume = {99},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/}
}
L. M. Samoilov. On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 404-408. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/
[1] A. Regev, “A primeness property for central polynomials”, Pacific J. Math., 83:1 (1979), 269–271 | DOI | MR | Zbl
[2] Diogo Diniz Pereira da Silva e Silva, “A primeness property for central polynomials of verbally prime P.I. algebras”, Linear and Multilinear Algebra, 63:11 (2015), 2151–2158 | DOI | MR | Zbl
[3] A. R. Kemer, “Mnogoobraziya i $Z_2$-graduirovannye algebry”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 1042–1059 | MR | Zbl
[4] Yu. P. Razmyslov, “Tozhdestva so sledom i tsentralnye polinomy v matrichnykh superalgebrakh $M_{n,k}$”, Matem. sb., 128:2 (1985), 194–215 | MR | Zbl
[5] S. V. Okhitin, “Ob ustoichivykh $T$-idealakh i tsentralnykh polinomakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 3, 85–88 | MR | Zbl
[6] A. Ya. Belov, “Assotsiativnykh $PI$-algebr, sovpadayuschikh so svoim kommutantom, ne suschestvuet”, Sib. matem. zhurn., 44:6 (2003), 1239–1254 | MR | Zbl
[7] V. N. Latyshev, “O nekotorykh mnogoobraziyakh assotsiativnykh algebr”, Izv. AN SSSR. Ser. matem., 37:5 (1973), 1010–1037 | MR | Zbl
[8] V. N. Latyshev, “Ustoichivye idealy tozhdestv”, Algebra i logika, 20:5 (1981), 563–570 | MR