On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 404-408

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that, if $f(x_1,\dots,x_n)g(y_1,\dots,y_m)$ is a multilinear central polynomial for a verbally prime $T$-ideal $\Gamma$ over a field of arbitrary characteristic, then both polynomials $f(x_1,\dots,x_n)$ and $g(y_1,\dots,y_m)$ are central for $\Gamma$.
Keywords: associative algebra, multilinear central polynomial, verbally prime $T$-ideal, prime variety.
Mots-clés : prime central polynomial
@article{MZM_2016_99_3_a9,
     author = {L. M. Samoilov},
     title = {On the {Primality} {Property} of {Central} {Polynomials} of {Prime} {Varieties} of {Associative} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {404--408},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/}
}
TY  - JOUR
AU  - L. M. Samoilov
TI  - On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras
JO  - Matematičeskie zametki
PY  - 2016
SP  - 404
EP  - 408
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/
LA  - ru
ID  - MZM_2016_99_3_a9
ER  - 
%0 Journal Article
%A L. M. Samoilov
%T On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras
%J Matematičeskie zametki
%D 2016
%P 404-408
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/
%G ru
%F MZM_2016_99_3_a9
L. M. Samoilov. On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 404-408. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/