On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 404-408.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that, if $f(x_1,\dots,x_n)g(y_1,\dots,y_m)$ is a multilinear central polynomial for a verbally prime $T$-ideal $\Gamma$ over a field of arbitrary characteristic, then both polynomials $f(x_1,\dots,x_n)$ and $g(y_1,\dots,y_m)$ are central for $\Gamma$.
Keywords: associative algebra, multilinear central polynomial, verbally prime $T$-ideal, prime variety.
Mots-clés : prime central polynomial
@article{MZM_2016_99_3_a9,
     author = {L. M. Samoilov},
     title = {On the {Primality} {Property} of {Central} {Polynomials} of {Prime} {Varieties} of {Associative} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {404--408},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/}
}
TY  - JOUR
AU  - L. M. Samoilov
TI  - On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras
JO  - Matematičeskie zametki
PY  - 2016
SP  - 404
EP  - 408
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/
LA  - ru
ID  - MZM_2016_99_3_a9
ER  - 
%0 Journal Article
%A L. M. Samoilov
%T On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras
%J Matematičeskie zametki
%D 2016
%P 404-408
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/
%G ru
%F MZM_2016_99_3_a9
L. M. Samoilov. On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 404-408. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a9/

[1] A. Regev, “A primeness property for central polynomials”, Pacific J. Math., 83:1 (1979), 269–271 | DOI | MR | Zbl

[2] Diogo Diniz Pereira da Silva e Silva, “A primeness property for central polynomials of verbally prime P.I. algebras”, Linear and Multilinear Algebra, 63:11 (2015), 2151–2158 | DOI | MR | Zbl

[3] A. R. Kemer, “Mnogoobraziya i $Z_2$-graduirovannye algebry”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 1042–1059 | MR | Zbl

[4] Yu. P. Razmyslov, “Tozhdestva so sledom i tsentralnye polinomy v matrichnykh superalgebrakh $M_{n,k}$”, Matem. sb., 128:2 (1985), 194–215 | MR | Zbl

[5] S. V. Okhitin, “Ob ustoichivykh $T$-idealakh i tsentralnykh polinomakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 3, 85–88 | MR | Zbl

[6] A. Ya. Belov, “Assotsiativnykh $PI$-algebr, sovpadayuschikh so svoim kommutantom, ne suschestvuet”, Sib. matem. zhurn., 44:6 (2003), 1239–1254 | MR | Zbl

[7] V. N. Latyshev, “O nekotorykh mnogoobraziyakh assotsiativnykh algebr”, Izv. AN SSSR. Ser. matem., 37:5 (1973), 1010–1037 | MR | Zbl

[8] V. N. Latyshev, “Ustoichivye idealy tozhdestv”, Algebra i logika, 20:5 (1981), 563–570 | MR