Classification of Zeta Functions of Bielliptic Surfaces over Finite Fields
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 384-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a bielliptic surface over a finite field, and let an elliptic curve $B$ be the Albanese variety of $S$; then the zeta function of the surface $S$ is equal to the zeta function of the direct product $\mathbb P^1\times B$. Therefore, the classification problem for the zeta functions of bielliptic surfaces is reduced to the existence problem for surfaces of a given type with a given Albanese curve. In the present paper, we complete this classification initiated in [1].
Keywords: finite field, zeta function, elliptic curve
Mots-clés : bielliptic surface.
@article{MZM_2016_99_3_a7,
     author = {S. Yu. Rybakov},
     title = {Classification of {Zeta} {Functions} of {Bielliptic} {Surfaces} over {Finite} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {384--394},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a7/}
}
TY  - JOUR
AU  - S. Yu. Rybakov
TI  - Classification of Zeta Functions of Bielliptic Surfaces over Finite Fields
JO  - Matematičeskie zametki
PY  - 2016
SP  - 384
EP  - 394
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a7/
LA  - ru
ID  - MZM_2016_99_3_a7
ER  - 
%0 Journal Article
%A S. Yu. Rybakov
%T Classification of Zeta Functions of Bielliptic Surfaces over Finite Fields
%J Matematičeskie zametki
%D 2016
%P 384-394
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a7/
%G ru
%F MZM_2016_99_3_a7
S. Yu. Rybakov. Classification of Zeta Functions of Bielliptic Surfaces over Finite Fields. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 384-394. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a7/

[1] S. Yu. Rybakov, “Dzeta-funktsii biellipticheskikh poverkhnostei nad konechnymi polyami”, Matem. zametki, 83:2 (2008), 273–285 | DOI | MR | Zbl

[2] M. A. Tsfasman, “Nombre de points des surfaces sur un corps fini”, Arithmetic, Geometry and Coding Theory, Walter de Gruyter, Berlin, 1996, 209–224 | MR | Zbl

[3] S. Rybakov, “Zeta functions of conic bundles and Del Pezzo surfaces of degree 4 over finite fields”, Mosc. Math. J., 5:4 (2005), 919–926 | MR | Zbl

[4] S. Rybakov, “Finite group subschemes of abelian varieties over finite fields”, Finite Fields Appl., 29 (2014), 132–150, arXiv: 1006.5959 | DOI | MR | Zbl

[5] E. Bombieri, D. Mumford, “Enriques' classification of surfaces in char. $p$. II”, Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, 23–42 | MR | Zbl

[6] M. Demazure, Lectures on $p$-divisible groups, Lecture Notes in Math., 302, Springer-Verlag, Berlin, 1972 | DOI | MR | Zbl

[7] M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Univ. Hamburg, 14:1 (1941), 197–272 | DOI | MR | Zbl

[8] W. C. Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. École. Norm. Sup. (4), 2 (1969), 521–560 | MR | Zbl

[9] M. A. Tsfasman, “Group of points of an elliptic curve over a finite field”, Theory of Numbers and Its Applications (Tbilisi, 1985), 1985, 286–287

[10] S. G. Vleduts, D. Yu. Nogin, M. A. Tsfasman, Algebrogeometricheskie kody. Osnovnye ponyatiya, MTsNMO, M., 2003

[11] L. Bădescu, Algebraic Surfaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl

[12] D. Mamford, Abelevy mnogoobraziya, Mir, M., 1971 | MR | Zbl

[13] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[14] J. Milne, Abelian Varieties, 2008 http://www.jmilne.org/math/CourseNotes/av.html