Classification of Zeta Functions of Bielliptic Surfaces over Finite Fields
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 384-394

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a bielliptic surface over a finite field, and let an elliptic curve $B$ be the Albanese variety of $S$; then the zeta function of the surface $S$ is equal to the zeta function of the direct product $\mathbb P^1\times B$. Therefore, the classification problem for the zeta functions of bielliptic surfaces is reduced to the existence problem for surfaces of a given type with a given Albanese curve. In the present paper, we complete this classification initiated in [1].
Keywords: finite field, zeta function, elliptic curve
Mots-clés : bielliptic surface.
@article{MZM_2016_99_3_a7,
     author = {S. Yu. Rybakov},
     title = {Classification of {Zeta} {Functions} of {Bielliptic} {Surfaces} over {Finite} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {384--394},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a7/}
}
TY  - JOUR
AU  - S. Yu. Rybakov
TI  - Classification of Zeta Functions of Bielliptic Surfaces over Finite Fields
JO  - Matematičeskie zametki
PY  - 2016
SP  - 384
EP  - 394
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a7/
LA  - ru
ID  - MZM_2016_99_3_a7
ER  - 
%0 Journal Article
%A S. Yu. Rybakov
%T Classification of Zeta Functions of Bielliptic Surfaces over Finite Fields
%J Matematičeskie zametki
%D 2016
%P 384-394
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a7/
%G ru
%F MZM_2016_99_3_a7
S. Yu. Rybakov. Classification of Zeta Functions of Bielliptic Surfaces over Finite Fields. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 384-394. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a7/