Besicovitch Cylindrical Transformation with a~H\"older Function
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 366-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $\gamma\in(0,1)$ and $\varepsilon>0$, we construct a cylindrical cascade with a $\gamma$-Hölder function over some rotation of the circle. This transformation has the Besicovitch property; i.e., it is topologically transitive and has discrete orbits. The Hausdorff dimension of the set of points of the circle that have discrete orbits is greater than $1-\gamma-\varepsilon$.
Keywords: cylindrical transformation, Besicovitch property, Hölder property
Mots-clés : Hausdorff dimension.
@article{MZM_2016_99_3_a5,
     author = {A. V. Kochergin},
     title = {Besicovitch {Cylindrical} {Transformation} with {a~H\"older} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {366--375},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a5/}
}
TY  - JOUR
AU  - A. V. Kochergin
TI  - Besicovitch Cylindrical Transformation with a~H\"older Function
JO  - Matematičeskie zametki
PY  - 2016
SP  - 366
EP  - 375
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a5/
LA  - ru
ID  - MZM_2016_99_3_a5
ER  - 
%0 Journal Article
%A A. V. Kochergin
%T Besicovitch Cylindrical Transformation with a~H\"older Function
%J Matematičeskie zametki
%D 2016
%P 366-375
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a5/
%G ru
%F MZM_2016_99_3_a5
A. V. Kochergin. Besicovitch Cylindrical Transformation with a~H\"older Function. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 366-375. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a5/

[1] D. V. Anosov, Tr. MIAN SSSR, 90, 1967, 3–210 | MR | Zbl

[2] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, Klassiki estestvoznaniya, Gostekhizdat, M.–L., 1947

[3] L. G. Shnirelman, “Primer odnogo preobrazovaniya ploskosti”, Izv. Donskogo politekh. in-ta, 4 (1930), 64–74

[4] A. S. Besicovitch, “A problem on topological transformation of the plane”, Fund. Math., 28 (1937), 61–65 | Zbl

[5] W. H. Gottschalk, G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955 | MR | Zbl

[6] A. S. Besicovitch, “A problem on topological transformations of the plane. II”, Proc. Cambridge Philos. Soc., 47 (1951), 38–45 | DOI | MR | Zbl

[7] E. A. Sidorov, “Ob odnom klasse minimalnykh mnozhestv”, UMN, 28:4 (1973), 225–226 | MR | Zbl

[8] S. Matsumoto, M. Shishikura, “Minimal sets of certain annular homeomorphisms”, Hiroshima Math. J., 32:2 (2002), 207–215 | MR | Zbl

[9] M. K. Mentzen, A. Siemaszko, “Cylinder cocycle extensions of minimal rotations on monothetic groups”, Colloq. Math., 101:1 (2004), 75–88 | DOI | MR | Zbl

[10] A. V. Kochergin, “Ob otsutstvii peremeshivaniya u spetsialnykh potokov nad povorotom okruzhnosti i potokov na dvumernom tore”, Dokl. AN SSSR, 205:3 (1972), 515–518 | MR | Zbl

[11] M. D. Shklover, “O klassicheskikh dinamicheskikh sistemakh na tore s nepreryvnym spektrom”, Izv. vuzov. Matem., 1967, no. 10, 113–124 | MR | Zbl

[12] A. M. Stepin, “O gomologicheskom uravnenii teorii dinamicheskikh sistem”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Izd-vo Yaroslavsk. un-ta, Yaroslavl, 1982, 106–117 | Zbl

[13] A. V. Kochergin, “Peremeshivayuschii spetsialnyi potok nad povorotom okruzhnosti s pochti lipshitsevoi funktsiei”, Matem. sb., 193:3 (2002), 51–78 | DOI | MR | Zbl

[14] K. Fra̧czek, M. Lemańczyk, “On Hausdorf dimension of the set of closed orbits for a cylindrical transformation”, Nonlinearity, 23 (2010), 2393–2422 | DOI | MR | Zbl

[15] E. Dymek, Transitive Cylinder Flows Whose Set of Discrete Points is of Full Hausdorff Dimension, 2013, arXiv: 1303.3099v1

[16] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl

[17] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, John Wiley and Sons, Hoboken, NJ, 2003 | MR | Zbl

[18] A. Kochergin, “A Besicovitch cylindrical transformation with Hölder function”, Electron. Res. Announc. Amer. Math. Soc., 22 (2015), 87–91