Besicovitch Cylindrical Transformation with a~H\"older Function
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 366-375

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $\gamma\in(0,1)$ and $\varepsilon>0$, we construct a cylindrical cascade with a $\gamma$-Hölder function over some rotation of the circle. This transformation has the Besicovitch property; i.e., it is topologically transitive and has discrete orbits. The Hausdorff dimension of the set of points of the circle that have discrete orbits is greater than $1-\gamma-\varepsilon$.
Keywords: cylindrical transformation, Besicovitch property, Hölder property
Mots-clés : Hausdorff dimension.
@article{MZM_2016_99_3_a5,
     author = {A. V. Kochergin},
     title = {Besicovitch {Cylindrical} {Transformation} with {a~H\"older} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {366--375},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a5/}
}
TY  - JOUR
AU  - A. V. Kochergin
TI  - Besicovitch Cylindrical Transformation with a~H\"older Function
JO  - Matematičeskie zametki
PY  - 2016
SP  - 366
EP  - 375
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a5/
LA  - ru
ID  - MZM_2016_99_3_a5
ER  - 
%0 Journal Article
%A A. V. Kochergin
%T Besicovitch Cylindrical Transformation with a~H\"older Function
%J Matematičeskie zametki
%D 2016
%P 366-375
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a5/
%G ru
%F MZM_2016_99_3_a5
A. V. Kochergin. Besicovitch Cylindrical Transformation with a~H\"older Function. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 366-375. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a5/